Blockchain-Based Distributed Federated Learning in Smart Grid
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ottavia Valentini & Nikoleta Andreadou & Paolo Bertoldi & Alexandre Lucas & Iolanda Saviuc & Evangelos Kotsakis, 2022. "Demand Response Impact Evaluation: A Review of Methods for Estimating the Customer Baseline Load," Energies, MDPI, vol. 15(14), pages 1-36, July.
- Kumar, R. Seshu & Raghav, L. Phani & Raju, D. Koteswara & Singh, Arvind R., 2021. "Intelligent demand side management for optimal energy scheduling of grid connected microgrids," Applied Energy, Elsevier, vol. 285(C).
- Saskia Lavrijssen & Brenda Espinosa Apráez & Thijs ten Caten, 2022. "The Legal Complexities of Processing and Protecting Personal Data in the Electricity Sector," Energies, MDPI, vol. 15(3), pages 1-24, February.
- Qiuhong Zhao, 2022. "A short-term prediction method of building energy consumption based on gradient progressive regression tree," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 44(2/3), pages 182-197.
- Fernández, Joaquín Delgado & Menci, Sergio Potenciano & Lee, Chul Min & Rieger, Alexander & Fridgen, Gilbert, 2022. "Privacy-preserving federated learning for residential short-term load forecasting," Applied Energy, Elsevier, vol. 326(C).
- Lee, Dasom & Hess, David J., 2021. "Data privacy and residential smart meters: Comparative analysis and harmonization potential," Utilities Policy, Elsevier, vol. 70(C).
- Carol Vigurs & Chris Maidment & Michael Fell & David Shipworth, 2021. "Customer Privacy Concerns as a Barrier to Sharing Data about Energy Use in Smart Local Energy Systems: A Rapid Realist Review," Energies, MDPI, vol. 14(5), pages 1-33, February.
- Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
- Sha, Huajing & Xu, Peng & Lin, Meishun & Peng, Chen & Dou, Qiang, 2021. "Development of a multi-granularity energy forecasting toolkit for demand response baseline calculation," Applied Energy, Elsevier, vol. 289(C).
- Andreea Valeria Vesa & Tudor Cioara & Ionut Anghel & Marcel Antal & Claudia Pop & Bogdan Iancu & Ioan Salomie & Vasile Teodor Dadarlat, 2020. "Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
- Gan, Wei & Yan, Mingyu & Wen, Jianfeng & Yao, Wei & Zhang, Jing, 2022. "A low-carbon planning method for joint regional-district multi-energy systems: From the perspective of privacy protection," Applied Energy, Elsevier, vol. 311(C).
- Bibi Ibrahim & Luis Rabelo & Edgar Gutierrez-Franco & Nicolas Clavijo-Buritica, 2022. "Machine Learning for Short-Term Load Forecasting in Smart Grids," Energies, MDPI, vol. 15(21), pages 1-19, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
- Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
- Qian-Cheng Wang & Yi-Xuan Wang & Izzy Yi Jian & Hsi-Hsien Wei & Xuan Liu & Yao-Tian Ma, 2020. "Exploring the “Energy-Saving Personality Traits” in the Office and Household Situation: An Empirical Study," Energies, MDPI, vol. 13(14), pages 1-17, July.
- Nguyen, Hai-Tra & Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Optimal demand side management scheduling-based bidirectional regulation of energy distribution network for multi-residential demand response with self-produced renewable energy," Applied Energy, Elsevier, vol. 322(C).
- Lind, Leandro & Chaves-Ávila, José Pablo & Valarezo, Orlando & Sanjab, Anibal & Olmos, Luis, 2024. "Baseline methods for distributed flexibility in power systems considering resource, market, and product characteristics," Utilities Policy, Elsevier, vol. 86(C).
- Jaka Rober & Leon Maruša & Miloš Beković, 2023. "A Machine Learning Application for the Energy Flexibility Assessment of a Distribution Network for Consumers," Energies, MDPI, vol. 16(17), pages 1-20, August.
- Huang, Yan & Ju, Yuntao & Ma, Kang & Short, Michael & Chen, Tao & Zhang, Ruosi & Lin, Yi, 2022. "Three-phase optimal power flow for networked microgrids based on semidefinite programming convex relaxation," Applied Energy, Elsevier, vol. 305(C).
- Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
- Khaizaran Abdulhussein Al Sumarmad & Nasri Sulaiman & Noor Izzri Abdul Wahab & Hashim Hizam, 2022. "Microgrid Energy Management System Based on Fuzzy Logic and Monitoring Platform for Data Analysis," Energies, MDPI, vol. 15(11), pages 1-19, June.
- Ryu, Do-Hyeon & Kim, Kwang-Jae, 2024. "The influence of information privacy concerns and perceived electricity usage habits on the usage intention of advanced metering infrastructure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Uzziah Mutumbi & Gladman Thondhlana & Sheunesu Ruwanza, 2022. "Co-Designed Interventions Yield Significant Electricity Savings among Low-Income Households in Makhanda South Africa," Energies, MDPI, vol. 15(7), pages 1-17, March.
- Seshu Kumar, R. & Phani Raghav, L. & Koteswara Raju, D. & Singh, Arvind R., 2021. "Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids," Applied Energy, Elsevier, vol. 301(C).
- An, Xiangxin & Si, Guojin & Xia, Tangbin & Wang, Dong & Pan, Ershun & Xi, Lifeng, 2023. "An energy-efficient collaborative strategy of maintenance planning and production scheduling for serial-parallel systems under time-of-use tariffs," Applied Energy, Elsevier, vol. 336(C).
- Phani Raghav, L. & Seshu Kumar, R. & Koteswara Raju, D. & Singh, Arvind R., 2022. "Analytic Hierarchy Process (AHP) – Swarm intelligence based flexible demand response management of grid-connected microgrid," Applied Energy, Elsevier, vol. 306(PB).
- Marco De Nigris & Francesca Giuliano, 2023. "The Role of Organised Civil Society in the Implementation of the Renewable Energy Transition and Renewable Energy Communities: A Qualitative Assessment," Energies, MDPI, vol. 16(10), pages 1-27, May.
- Zhang, Le & Zhu, Jizhong & Zhang, Di & Liu, Yun, 2023. "An incremental photovoltaic power prediction method considering concept drift and privacy protection," Applied Energy, Elsevier, vol. 351(C).
- Paraskevas Koukaras & Paschalis Gkaidatzis & Napoleon Bezas & Tommaso Bragatto & Federico Carere & Francesca Santori & Marcel Antal & Dimosthenis Ioannidis & Christos Tjortjis & Dimitrios Tzovaras, 2021. "A Tri-Layer Optimization Framework for Day-Ahead Energy Scheduling Based on Cost and Discomfort Minimization," Energies, MDPI, vol. 14(12), pages 1-24, June.
- Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
- Reif, Valerie & Meeus, Leonardo, 2022. "Smart metering interoperability issues and solutions: Taking inspiration from other ecosystems and sectors," Utilities Policy, Elsevier, vol. 76(C).
More about this item
Keywords
energy prediction; federated learning; blockchain; smart grid management; demand response; smart contracts; machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4499-:d:987347. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.