IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i23p4499-d987347.html
   My bibliography  Save this article

Blockchain-Based Distributed Federated Learning in Smart Grid

Author

Listed:
  • Marcel Antal

    (Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania)

  • Vlad Mihailescu

    (Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania)

  • Tudor Cioara

    (Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania)

  • Ionut Anghel

    (Computer Science Department, Technical University of Cluj-Napoca, Memorandumului 28, 400114 Cluj-Napoca, Romania)

Abstract

The participation of prosumers in demand-response programs is essential for the success of demand-side management in renewable-powered energy grids. Unfortunately, the engagement is still low due to concerns related to the privacy of their energy data used in the prediction processes. In this paper, we propose a blockchain-based distributed federated learning (FL) technique for energy-demand prediction that combines FL with blockchain to provide data privacy and trust features for energy prosumers. The privacy-sensitive energy data are stored locally at edge prosumer nodes without revealing it to third parties, with only the learned local model weights being shared using a blockchain network. The global federated model is not centralized but distributed and replicated over the blockchain overlay, ensuring the model immutability and provenance of parameter updates. We had proposed smart contracts to deal with the integration of local machine-learning prediction models with the blockchain, defining functions for the model parameters’ scaling and reduction of blockchain overhead. The centralized, local-edge, and blockchain-integrated models are comparatively evaluated for prediction of energy demand 24 h ahead using a multi-layer perceptron model and the monitored energy data of several prosumers. The results show only a slight decrease in prediction accuracy in the case of blockchain-based distributed FL with reliable data privacy support compared with the centralized learning solution.

Suggested Citation

  • Marcel Antal & Vlad Mihailescu & Tudor Cioara & Ionut Anghel, 2022. "Blockchain-Based Distributed Federated Learning in Smart Grid," Mathematics, MDPI, vol. 10(23), pages 1-19, November.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4499-:d:987347
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/23/4499/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/23/4499/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ottavia Valentini & Nikoleta Andreadou & Paolo Bertoldi & Alexandre Lucas & Iolanda Saviuc & Evangelos Kotsakis, 2022. "Demand Response Impact Evaluation: A Review of Methods for Estimating the Customer Baseline Load," Energies, MDPI, vol. 15(14), pages 1-36, July.
    2. Saskia Lavrijssen & Brenda Espinosa Apráez & Thijs ten Caten, 2022. "The Legal Complexities of Processing and Protecting Personal Data in the Electricity Sector," Energies, MDPI, vol. 15(3), pages 1-24, February.
    3. Carol Vigurs & Chris Maidment & Michael Fell & David Shipworth, 2021. "Customer Privacy Concerns as a Barrier to Sharing Data about Energy Use in Smart Local Energy Systems: A Rapid Realist Review," Energies, MDPI, vol. 14(5), pages 1-33, February.
    4. Shen, Meng & Lu, Yujie & Wei, Kua Harn & Cui, Qingbin, 2020. "Prediction of household electricity consumption and effectiveness of concerted intervention strategies based on occupant behaviour and personality traits," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Andreea Valeria Vesa & Tudor Cioara & Ionut Anghel & Marcel Antal & Claudia Pop & Bogdan Iancu & Ioan Salomie & Vasile Teodor Dadarlat, 2020. "Energy Flexibility Prediction for Data Center Engagement in Demand Response Programs," Sustainability, MDPI, vol. 12(4), pages 1-23, February.
    6. Gan, Wei & Yan, Mingyu & Wen, Jianfeng & Yao, Wei & Zhang, Jing, 2022. "A low-carbon planning method for joint regional-district multi-energy systems: From the perspective of privacy protection," Applied Energy, Elsevier, vol. 311(C).
    7. Kumar, R. Seshu & Raghav, L. Phani & Raju, D. Koteswara & Singh, Arvind R., 2021. "Intelligent demand side management for optimal energy scheduling of grid connected microgrids," Applied Energy, Elsevier, vol. 285(C).
    8. Qiuhong Zhao, 2022. "A short-term prediction method of building energy consumption based on gradient progressive regression tree," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 44(2/3), pages 182-197.
    9. Fernández, Joaquín Delgado & Menci, Sergio Potenciano & Lee, Chul Min & Rieger, Alexander & Fridgen, Gilbert, 2022. "Privacy-preserving federated learning for residential short-term load forecasting," Applied Energy, Elsevier, vol. 326(C).
    10. Lee, Dasom & Hess, David J., 2021. "Data privacy and residential smart meters: Comparative analysis and harmonization potential," Utilities Policy, Elsevier, vol. 70(C).
    11. Sha, Huajing & Xu, Peng & Lin, Meishun & Peng, Chen & Dou, Qiang, 2021. "Development of a multi-granularity energy forecasting toolkit for demand response baseline calculation," Applied Energy, Elsevier, vol. 289(C).
    12. Bibi Ibrahim & Luis Rabelo & Edgar Gutierrez-Franco & Nicolas Clavijo-Buritica, 2022. "Machine Learning for Short-Term Load Forecasting in Smart Grids," Energies, MDPI, vol. 15(21), pages 1-19, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eren, Yavuz & Küçükdemiral, İbrahim, 2024. "A comprehensive review on deep learning approaches for short-term load forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Miguel Ángel Rodríguez López & Diego Rodríguez Rodríguez, 2024. "La aplicación de datos masivos en economía de la energía: una revisión," Working Papers 2024-08, FEDEA.
    3. Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
    4. Silva, Walquiria N. & Bandória, Luís H.T. & Dias, Bruno H. & de Almeida, Madson C. & de Oliveira, Leonardo W., 2023. "Generating realistic load profiles in smart grids: An approach based on nonlinear independent component estimation (NICE) and convolutional layers," Applied Energy, Elsevier, vol. 351(C).
    5. Türkoğlu, A. Selim & Erkmen, Burcu & Eren, Yavuz & Erdinç, Ozan & Küçükdemiral, İbrahim, 2024. "Integrated Approaches in Resilient Hierarchical Load Forecasting via TCN and Optimal Valley Filling Based Demand Response Application," Applied Energy, Elsevier, vol. 360(C).
    6. Zhu, Yilin & Xu, Yujie & Chen, Haisheng & Guo, Huan & Zhang, Hualiang & Zhou, Xuezhi & Shen, Haotian, 2023. "Optimal dispatch of a novel integrated energy system combined with multi-output organic Rankine cycle and hybrid energy storage," Applied Energy, Elsevier, vol. 343(C).
    7. Chen, Bingyang & Zeng, Xingjie & Zhang, Weishan & Fan, Lulu & Cao, Shaohua & Zhou, Jiehan, 2023. "Knowledge sharing-based multi-block federated learning for few-shot oil layer identification," Energy, Elsevier, vol. 283(C).
    8. Qian-Cheng Wang & Yi-Xuan Wang & Izzy Yi Jian & Hsi-Hsien Wei & Xuan Liu & Yao-Tian Ma, 2020. "Exploring the “Energy-Saving Personality Traits” in the Office and Household Situation: An Empirical Study," Energies, MDPI, vol. 13(14), pages 1-17, July.
    9. Masoud Dashtdar & Aymen Flah & Seyed Mohammad Sadegh Hosseinimoghadam & Hossam Kotb & Elżbieta Jasińska & Radomir Gono & Zbigniew Leonowicz & Michał Jasiński, 2022. "Optimal Operation of Microgrids with Demand-Side Management Based on a Combination of Genetic Algorithm and Artificial Bee Colony," Sustainability, MDPI, vol. 14(11), pages 1-26, May.
    10. Hanaa Feleafel & Jovana Radulovic & Michel Leseure, 2024. "Should We Have Selfish Microgrids?," Energies, MDPI, vol. 17(16), pages 1-24, August.
    11. Zhou, Xu & Ma, Zhongjing & Zou, Suli & Zhang, Jinhui, 2022. "Consensus-based distributed economic dispatch for Multi Micro Energy Grid systems under coupled carbon emissions," Applied Energy, Elsevier, vol. 324(C).
    12. Nguyen, Hai-Tra & Safder, Usman & Loy-Benitez, Jorge & Yoo, ChangKyoo, 2022. "Optimal demand side management scheduling-based bidirectional regulation of energy distribution network for multi-residential demand response with self-produced renewable energy," Applied Energy, Elsevier, vol. 322(C).
    13. José Luis Ruiz Duarte & Neng Fan, 2022. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies," Energies, MDPI, vol. 15(7), pages 1-24, March.
    14. Lind, Leandro & Chaves-Ávila, José Pablo & Valarezo, Orlando & Sanjab, Anibal & Olmos, Luis, 2024. "Baseline methods for distributed flexibility in power systems considering resource, market, and product characteristics," Utilities Policy, Elsevier, vol. 86(C).
    15. Reynaldo Gonzalez & Sara Ahmed & Miltiadis Alamaniotis, 2023. "Implementing Very-Short-Term Forecasting of Residential Load Demand Using a Deep Neural Network Architecture," Energies, MDPI, vol. 16(9), pages 1-16, April.
    16. Jaka Rober & Leon Maruša & Miloš Beković, 2023. "A Machine Learning Application for the Energy Flexibility Assessment of a Distribution Network for Consumers," Energies, MDPI, vol. 16(17), pages 1-20, August.
    17. Huang, Yan & Ju, Yuntao & Ma, Kang & Short, Michael & Chen, Tao & Zhang, Ruosi & Lin, Yi, 2022. "Three-phase optimal power flow for networked microgrids based on semidefinite programming convex relaxation," Applied Energy, Elsevier, vol. 305(C).
    18. Salem, Mohammed Z. & Ertz, Myriam & Sarigӧllü, Emine, 2021. "Demarketing strategies to rationalize electricity consumption in the Gaza Strip-Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    20. Lee, Dasom & Hess, David J. & Heldeweg, Michiel A., 2022. "Safety and privacy regulations for unmanned aerial vehicles: A multiple comparative analysis," Technology in Society, Elsevier, vol. 71(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:23:p:4499-:d:987347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.