IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i2p1200-d1029535.html
   My bibliography  Save this article

Interactive Effects of Rising Temperature, Elevated CO 2 and Herbivory on the Growth and Stoichiometry of a Submerged Macrophyte Vallisneria natans

Author

Listed:
  • Chi Zhou

    (Hubei Water Resources and Hydropower Science and Technology Promotion Center, Hubei Water Resources Research Institute, Wuhan 430070, China
    These authors contributed equally to this work.)

  • Chaochao Lv

    (Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430000, China
    These authors contributed equally to this work.)

  • Teng Miao

    (Hubei Water Resources and Hydropower Science and Technology Promotion Center, Hubei Water Resources Research Institute, Wuhan 430070, China)

  • Xufa Ma

    (College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China)

  • Chengxing Xia

    (College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China)

Abstract

Global climate changes are affecting organisms and their interactions in terrestrial and aquatic ecosystems, such as the increase in temperature and CO 2 concentration. Herbivory interaction is a very important part of nutrient cycle and energy flow in freshwater ecosystem, and climate changes may directly or indirectly affect aquatic plants, aquatic herbivores and their interactions. In this study, we explored the effects of the rising temperature, elevated CO 2 concentrations and herbivory by an herbivorous snail ( Radix auricularia L.) on a submerged plant ( Vallisneria natans L.). Our results showed that herbivory, temperature, and CO 2 had specific effects on snail and plant growth, statistically there was only one interaction-a reduction in leaf number. Under different experimental conditions, snail herbivory always has negative effects on biomass accumulation and growth of V. natans . Moreover, the increases in temperature also inhibited its growth. Snail herbivory reduced the content of total carbon and total nitrogen of V. natans in all treatments, while the total phenols content increased. Our findings indicate that the rising temperature, elevated CO 2 concentrations and herbivory have interactive effects on the growth and stoichiometry of submerged macrophytes, but further research is needed between aquatic plants and aquatic herbivores to aid prediction the impact of climate change on freshwater ecosystems.

Suggested Citation

  • Chi Zhou & Chaochao Lv & Teng Miao & Xufa Ma & Chengxing Xia, 2023. "Interactive Effects of Rising Temperature, Elevated CO 2 and Herbivory on the Growth and Stoichiometry of a Submerged Macrophyte Vallisneria natans," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1200-:d:1029535
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/2/1200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/2/1200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Niall Mac Dowell & Paul S. Fennell & Nilay Shah & Geoffrey C. Maitland, 2017. "The role of CO2 capture and utilization in mitigating climate change," Nature Climate Change, Nature, vol. 7(4), pages 243-249, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qian & Du, Caiyi & Zhang, Xueguang, 2024. "Direct air capture capacity configuration and cost allocation based on sharing mechanism," Applied Energy, Elsevier, vol. 374(C).
    2. Mauricio Marrone & Martina K Linnenluecke, 2020. "Interdisciplinary Research Maps: A new technique for visualizing research topics," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-16, November.
    3. Takeshi Tsuji & Masao Sorai & Masashige Shiga & Shigenori Fujikawa & Toyoki Kunitake, 2021. "Geological storage of CO2–N2–O2 mixtures produced by membrane‐based direct air capture (DAC)," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(4), pages 610-618, August.
    4. Iva Ridjan Skov & Noémi Schneider & Gerald Schweiger & Josef-Peter Schöggl & Alfred Posch, 2021. "Power-to-X in Denmark: An Analysis of Strengths, Weaknesses, Opportunities and Threats," Energies, MDPI, vol. 14(4), pages 1-14, February.
    5. P. A. Turner & C. B. Field & D. B. Lobell & D. L. Sanchez & K. J. Mach, 2018. "Unprecedented rates of land-use transformation in modelled climate change mitigation pathways," Nature Sustainability, Nature, vol. 1(5), pages 240-245, May.
    6. Zhang, Yanfang & Gao, Qi & Wei, Jinpeng & Shi, Xunpeng & Zhou, Dequn, 2023. "Can China's energy-consumption permit trading scheme achieve the “Porter” effect? Evidence from an estimated DSGE model," Energy Policy, Elsevier, vol. 180(C).
    7. Turaj S. Faran & Lennart Olsson, 2018. "Geoengineering: neither economical, nor ethical—a risk–reward nexus analysis of carbon dioxide removal," International Environmental Agreements: Politics, Law and Economics, Springer, vol. 18(1), pages 63-77, February.
    8. Wang, Peng-Tao & Wei, Yi-Ming & Yang, Bo & Li, Jia-Quan & Kang, Jia-Ning & Liu, Lan-Cui & Yu, Bi-Ying & Hou, Yun-Bing & Zhang, Xian, 2020. "Carbon capture and storage in China’s power sector: Optimal planning under the 2 °C constraint," Applied Energy, Elsevier, vol. 263(C).
    9. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Xinyi Sun & Xiaowei Mu & Wei Zheng & Lei Wang & Sixie Yang & Chuanchao Sheng & Hui Pan & Wei Li & Cheng-Hui Li & Ping He & Haoshen Zhou, 2023. "Binuclear Cu complex catalysis enabling Li–CO2 battery with a high discharge voltage above 3.0 V," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    11. Bono IJzendoorn & Saad F. Albawardi & William D. Jobbins & George F. S. Whitehead & John E. McGrady & Meera Mehta, 2024. "Transforming carbon dioxide into a methanol surrogate using modular transition metal-free Zintl ions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    12. Andrew William Ruttinger & Miyuru Kannangara & Jalil Shadbahr & Phil De Luna & Farid Bensebaa, 2021. "How CO 2 -to-Diesel Technology Could Help Reach Net-Zero Emissions Targets: A Canadian Case Study," Energies, MDPI, vol. 14(21), pages 1-21, October.
    13. Koytsoumpa, E.I. & Magiri – Skouloudi, D. & Karellas, S. & Kakaras, E., 2021. "Bioenergy with carbon capture and utilization: A review on the potential deployment towards a European circular bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    14. Cheng Cao & Hejuan Liu & Zhengmeng Hou & Faisal Mehmood & Jianxing Liao & Wentao Feng, 2020. "A Review of CO 2 Storage in View of Safety and Cost-Effectiveness," Energies, MDPI, vol. 13(3), pages 1-45, January.
    15. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    16. Asadi, Javad & Kazempoor, Pejman, 2024. "Economic and operational assessment of solar-assisted hybrid carbon capture system for combined cycle power plants," Energy, Elsevier, vol. 303(C).
    17. Zhang, Pan & Tian, XiangFeng & Fu, Dong, 2018. "CO2 removal in tray tower by using AAILs activated MDEA aqueous solution," Energy, Elsevier, vol. 161(C), pages 1122-1132.
    18. Layritz, Lucia S. & Dolganova, Iulia & Finkbeiner, Matthias & Luderer, Gunnar & Penteado, Alberto T. & Ueckerdt, Falko & Repke, Jens-Uwe, 2021. "The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production," Applied Energy, Elsevier, vol. 296(C).
    19. Fan, Jing-Li & Li, Zezheng & Ding, Zixia & Li, Kai & Zhang, Xian, 2023. "Investment decisions on carbon capture utilization and storage retrofit of Chinese coal-fired power plants based on real option and source-sink matching models," Energy Economics, Elsevier, vol. 126(C).
    20. Lamberts-Van Assche, Hanne & Lavrutich, Maria & Compernolle, Tine & Thomassen, Gwenny & Thijssen, Jacco J.J. & Kort, Peter M., 2023. "CO2 storage or utilization? A real options analysis under market and technological uncertainty," Journal of Environmental Economics and Management, Elsevier, vol. 122(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:2:p:1200-:d:1029535. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.