IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4367-d1468849.html
   My bibliography  Save this article

Integrated Optimal Energy Management of Multi-Microgrid Network Considering Energy Performance Index: Global Chance-Constrained Programming Framework

Author

Listed:
  • Mohammad Hemmati

    (Center for Industrial Electronics, University of Southern Denmark, 6400 Sønderborg, Denmark)

  • Navid Bayati

    (Center for Industrial Electronics, University of Southern Denmark, 6400 Sønderborg, Denmark)

  • Thomas Ebel

    (Center for Industrial Electronics, University of Southern Denmark, 6400 Sønderborg, Denmark)

Abstract

Distributed generation (DG) sources play a special role in the operation of active energy networks. The microgrid (MG) is known as a suitable substrate for the development and installation of DGs. However, the future of energy distribution networks will consist of more interconnected and complex MGs, called multi-microgrid (MMG) networks. Therefore, energy management in such an energy system is a major challenge for distribution network operators. This paper presents a new energy management method for the MMG network in the presence of battery storage, renewable sources, and demand response (DR) programs. To show the performance of each connected MG’s inefficient utilization of its available generation capacity, an index called unused power capacity (UPC) is defined, which indicates the availability and individual performance of each MG. The uncertainties associated with load and the power output of wind and solar sources are handled by employing the chance-constrained programming (CCP) optimization framework in the MMG energy management model. The proposed CCP ensures the safe operation of the system at the desired confidence level by involving various uncertainties in the problem while optimizing operating costs under Mixed-Integer Linear Programming (MILP). The proposed energy management model is assessed on a sample network concerning DC power flow limitations. The procured power of each MG and power exchanges at the distribution network level are investigated and discussed.

Suggested Citation

  • Mohammad Hemmati & Navid Bayati & Thomas Ebel, 2024. "Integrated Optimal Energy Management of Multi-Microgrid Network Considering Energy Performance Index: Global Chance-Constrained Programming Framework," Energies, MDPI, vol. 17(17), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4367-:d:1468849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Spyros Giannelos & Stefan Borozan & Marko Aunedi & Xi Zhang & Hossein Ameli & Danny Pudjianto & Ioannis Konstantelos & Goran Strbac, 2023. "Modelling Smart Grid Technologies in Optimisation Problems for Electricity Grids," Energies, MDPI, vol. 16(13), pages 1-15, June.
    2. Rodriguez, Mauricio & Arcos-Aviles, Diego & Guinjoan, Francesc, 2024. "Simple fuzzy logic-based energy management for power exchange in isolated multi-microgrid systems: A case study in a remote community in the Amazon region of Ecuador," Applied Energy, Elsevier, vol. 357(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Reza Kheirkhah & Carlos Frederico Meschini Almeida & Nelson Kagan & Jonatas Boas Leite, 2023. "Optimal Probabilistic Allocation of Photovoltaic Distributed Generation: Proposing a Scenario-Based Stochastic Programming Model," Energies, MDPI, vol. 16(21), pages 1-18, October.
    2. Lin Wang & Yugang He & Renhong Wu, 2024. "Digitization Meets Energy Transition: Shaping the Future of Environmental Sustainability," Energies, MDPI, vol. 17(4), pages 1-25, February.
    3. Lang Zhao & Zhidong Wang & Hao Sheng & Yizheng Li & Xueying Wang & Yao Wang & Haifeng Yu, 2024. "Optimal Configuration Model for Large Capacity Synchronous Condenser Considering Transient Voltage Stability in Multiple UHV DC Receiving End Grids," Energies, MDPI, vol. 17(21), pages 1-21, October.
    4. Masoumeh Sharifpour & Mohammad Taghi Ameli & Hossein Ameli & Goran Strbac, 2023. "A Resilience-Oriented Approach for Microgrid Energy Management with Hydrogen Integration during Extreme Events," Energies, MDPI, vol. 16(24), pages 1-18, December.
    5. Spyros Giannelos & Tai Zhang & Danny Pudjianto & Ioannis Konstantelos & Goran Strbac, 2024. "Investments in Electricity Distribution Grids: Strategic versus Incremental Planning," Energies, MDPI, vol. 17(11), pages 1-13, June.
    6. Adriana Grigorescu & Victor Raul Lopez Ruiz & Cristina Lincaru & Elena Condrea, 2023. "Specialization Patterns for the Development of Renewable Energy Generation Technologies across Countries," Energies, MDPI, vol. 16(20), pages 1-26, October.
    7. Zhong Guan & Hui Wang & Zhi Li & Xiaohu Luo & Xi Yang & Jugang Fang & Qiang Zhao, 2024. "Multi-Objective Optimal Scheduling of Microgrids Based on Improved Particle Swarm Algorithm," Energies, MDPI, vol. 17(7), pages 1-20, April.
    8. Paweł Pijarski & Adrian Belowski, 2024. "Application of Methods Based on Artificial Intelligence and Optimisation in Power Engineering—Introduction to the Special Issue," Energies, MDPI, vol. 17(2), pages 1-42, January.
    9. Tadeusz Białoń & Roman Niestrój & Wojciech Skarka & Wojciech Korski, 2023. "HPPC Test Methodology Using LFP Battery Cell Identification Tests as an Example," Energies, MDPI, vol. 16(17), pages 1-21, August.
    10. John O’Donnell & Wencong Su, 2023. "A Stochastic Load Forecasting Approach to Prevent Transformer Failures and Power Quality Issues Amid the Evolving Electrical Demands Facing Utilities," Energies, MDPI, vol. 16(21), pages 1-23, October.
    11. Spyros Giannelos & Xi Zhang & Tai Zhang & Goran Strbac, 2024. "Multi-Objective Optimization for Pareto Frontier Sensitivity Analysis in Power Systems," Sustainability, MDPI, vol. 16(14), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4367-:d:1468849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.