Effects of gas components, reservoir property and pore structure of shale gas reservoir on the competitive adsorption behavior of CO2 and CH4
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2022.124242
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Han & Zhang, Mingshan & Xia, Xuanzhe & Tian, Zhenhua & Qin, Xiangjie & Cai, Jianchao, 2024. "Lattice Boltzmann prediction of CO2 and CH4 competitive adsorption in shale porous media accelerated by machine learning for CO2 sequestration and enhanced CH4 recovery," Applied Energy, Elsevier, vol. 370(C).
- Wei, Jianguang & Li, Jiangtao & Zhang, Ao & Shang, Demiao & Zhou, Xiaofeng & Niu, Yintao, 2023. "Influence of shale bedding on development of microscale pores and fractures," Energy, Elsevier, vol. 282(C).
- Wu, Jian & Shen, Luming & Huang, Pengyu & Gan, Yixiang, 2023. "Selective adsorption and transport of CO2–CH4 mixture under nano-confinement," Energy, Elsevier, vol. 273(C).
- Yang, Hongmin & Kang, Ningning & Chen, Xiangjun & Liu, Yuan, 2023. "Exploring the inhibitory effect of H2O on CO2/CH4 adsorption in coal: Insights from experimental and simulation approaches," Energy, Elsevier, vol. 284(C).
- Wu, Jian & Gan, Yixiang & Shi, Zhang & Huang, Pengyu & Shen, Luming, 2023. "Pore-scale lattice Boltzmann simulation of CO2-CH4 displacement in shale matrix," Energy, Elsevier, vol. 278(PB).
- Wang, Zengding & Liu, Tengyu & Liu, Shanchao & Jia, Cunqi & Yao, Jun & Sun, Hai & Yang, Yongfei & Zhang, Lei & Delshad, Mojdeh & Sepehrnoori, Kamy & Zhong, Junjie, 2024. "Adsorption effects on CO2-oil minimum miscibility pressure in tight reservoirs," Energy, Elsevier, vol. 288(C).
- Gao, Zheng & Li, Bobo & Li, Jianhua & Jia, Lidan & Wang, Zhonghui, 2023. "Adsorption characteristics and thermodynamic analysis of shale in northern Guizhou, China: Measurement, modeling and prediction," Energy, Elsevier, vol. 262(PA).
- Yi, Jun & Qi, ZhongLi & Li, XiangChengZhen & Liu, Hong & Zhou, Wei, 2024. "Spatial correlation-based machine learning framework for evaluating shale gas production potential: A case study in southern Sichuan Basin, China," Applied Energy, Elsevier, vol. 357(C).
- Liu, Bo & Mohammadi, Mohammad-Reza & Ma, Zhongliang & Bai, Longhui & Wang, Liu & Xu, Yaohui & Hemmati-Sarapardeh, Abdolhossein & Ostadhassan, Mehdi, 2023. "Pore structure evolution of Qingshankou shale (kerogen type I) during artificial maturation via hydrous and anhydrous pyrolysis: Experimental study and intelligent modeling," Energy, Elsevier, vol. 282(C).
- Wei, Jianguang & Fu, Lanqing & Zhao, Guozhong & Zhao, Xiaoqing & Liu, Xinrong & Wang, Anlun & Wang, Yan & Cao, Sheng & Jin, Yuhan & Yang, Fengrui & Liu, Tianyang & Yang, Ying, 2023. "Nuclear magnetic resonance study on imbibition and stress sensitivity of lamellar shale oil reservoir," Energy, Elsevier, vol. 282(C).
- Li, Bo & Yu, Hao & Xu, WenLong & Huang, HanWei & Huang, MengCheng & Meng, SiWei & Liu, He & Wu, HengAn, 2023. "A multi-physics coupled multi-scale transport model for CO2 sequestration and enhanced recovery in shale formation with fractal fracture networks," Energy, Elsevier, vol. 284(C).
- Nie, Bin, 2023. "Diffusion characteristics of shale mixed gases on the wall of microscale fractures," Energy, Elsevier, vol. 284(C).
- Xie, Weidong & Wang, Hua & Vandeginste, Veerle & Chen, Si & Gan, Huajun & Wang, Meng & Yu, Zhenghong, 2023. "Thermodynamic and kinetic affinity of CO2 relative to CH4 and their pressure, temperature and pore structure sensitivity in the competitive adsorption system in shale gas reservoirs," Energy, Elsevier, vol. 277(C).
- Dai, Xuguang & Wei, Chongtao & Wang, Meng & Ma, Ruying & Song, Yu & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method," Energy, Elsevier, vol. 264(C).
- Micheal, Marembo & Yu, Hao & Meng, SiWei & Xu, WenLong & Huang, HanWei & Huang, MengCheng & Zhang, HouLin & Liu, He & Wu, HengAn, 2023. "Gas production from shale reservoirs with bifurcating fractures: A modified quadruple-domain model coupling microseismic events," Energy, Elsevier, vol. 278(C).
More about this item
Keywords
Adsorption affinity; Binary gas components; Reservoir property; Pore structure; Enhanced CH4 recovery; CO2 sequestration;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:254:y:2022:i:pb:s0360544222011458. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.