IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v355y2024ics0306261923016239.html
   My bibliography  Save this article

Optimized design and application performance analysis of heat recovery hybrid system for radioisotope thermophotovoltaic based on thermoelectric heat dissipation

Author

Listed:
  • Wang, Hongyu
  • Xu, Zhiheng
  • Wang, Chen
  • Hou, Zongbin
  • Bian, Mingxin
  • Zhuang, Nailiang
  • Tao, Haijun
  • Wang, Yuqiao
  • Tang, Xiaobin

Abstract

Radioisotope thermophotovoltaic (RTPV) generators face a fundamental challenge, which is the significant output loss and energy wastage caused by the substantial thermal deposition resulting from the arrival of infrared radiation from the heat source at the energy conversion unit. This contradiction has gradually become a key limiting factor for its further development in recent years. In this work, a novel hybrid system based on the thermophotovoltaic-thermoelectric (TPV-TE) effect is proposed, in which the Bi2Te3-based I/W-type thermoelectric leg plays both heat dissipation and heat recovery for power supply. The heat recovery thermoelectric legs were prepared using a cold pressing mould and sintering method, and their Seebeck effect was used to convert the unwanted heat recover from InGaAs thermophotovoltaic cells into electrical power. The design preparation scheme of the heat recovery hybrid module and its potential application performance at 700–1000 K heat source temperature were investigated through experimental tests and simulations. The W-type TPV-TE heat recovery hybrid system exhibits good gain of 12.9% at 1000 K, and the output power can be increased by additional 21.6% in series mode. Simulations for environmental applications show better heat recovery in deep space than on Earth, with an output gain of 63.7% and an energy conversion efficiency of 11.23%. The heat recovery design enhances the competitiveness of the RTPV and provides new ideas for optimizing other heat recovery applications for thermal energy conversion systems.

Suggested Citation

  • Wang, Hongyu & Xu, Zhiheng & Wang, Chen & Hou, Zongbin & Bian, Mingxin & Zhuang, Nailiang & Tao, Haijun & Wang, Yuqiao & Tang, Xiaobin, 2024. "Optimized design and application performance analysis of heat recovery hybrid system for radioisotope thermophotovoltaic based on thermoelectric heat dissipation," Applied Energy, Elsevier, vol. 355(C).
  • Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016239
    DOI: 10.1016/j.apenergy.2023.122259
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923016239
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122259?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Haiping, Chen & Jiguang, Huang & Heng, Zhang & Kai, Liang & Haowen, Liu & Shuangyin, Liang, 2019. "Experimental investigation of a novel low concentrating photovoltaic/thermal–thermoelectric generator hybrid system," Energy, Elsevier, vol. 166(C), pages 83-95.
    2. Wang, Xiawa & Liang, Renrong & Fisher, Peter & Chan, Walker & Xu, Jun, 2020. "Critical design features of thermal-based radioisotope generators: A review of the power solution for polar regions and space," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Li, Dianhong & Xuan, Yimin & Yin, Ershuai & Li, Qiang, 2018. "Conversion efficiency gain for concentrated triple-junction solar cell system through thermal management," Renewable Energy, Elsevier, vol. 126(C), pages 960-968.
    4. Yin, Ershuai & Li, Qiang, 2022. "Achieving extensive lossless coupling of photovoltaic and thermoelectric devices through parallel connection," Renewable Energy, Elsevier, vol. 193(C), pages 565-575.
    5. Ferrari, Claudio & Melino, Francesco & Pinelli, Michele & Spina, Pier Ruggero, 2014. "Thermophotovoltaic energy conversion: Analytical aspects, prototypes and experiences," Applied Energy, Elsevier, vol. 113(C), pages 1717-1730.
    6. Sung Hoon Park & Seungki Jo & Beomjin Kwon & Fredrick Kim & Hyeong Woo Ban & Ji Eun Lee & Da Hwi Gu & Se Hwa Lee & Younghun Hwang & Jin-Sang Kim & Dow-Bin Hyun & Sukbin Lee & Kyoung Jin Choi & Wook Jo, 2016. "High-performance shape-engineerable thermoelectric painting," Nature Communications, Nature, vol. 7(1), pages 1-10, December.
    7. Yuan, Zicheng & Tang, Xiaobin & Xu, Zhiheng & Li, Junqin & Chen, Wang & Liu, Kai & Liu, Yunpeng & Zhang, Zhengrong, 2018. "Screen-printed radial structure micro radioisotope thermoelectric generator," Applied Energy, Elsevier, vol. 225(C), pages 746-754.
    8. Luo, Ding & Sun, Zeyu & Wang, Ruochen, 2022. "Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery," Energy, Elsevier, vol. 238(PB).
    9. Mahmoudinezhad, S. & Rezania, A. & Cotfas, D.T. & Cotfas, P.A. & Rosendahl, L.A., 2018. "Experimental and numerical investigation of hybrid concentrated photovoltaic – Thermoelectric module under low solar concentration," Energy, Elsevier, vol. 159(C), pages 1123-1131.
    10. Wang, Hongyu & Xu, Zhiheng & Yuan, Zicheng & Liu, Kai & Meng, Caifeng & Tang, Xiaobin, 2022. "High-temperature and radiation-resistant spinel-type ferrite coating for thermo-optical conversion in radioisotope thermophotovoltaic generators," Energy, Elsevier, vol. 239(PD).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jang, Eunhwa & Banerjee, Priyanshu & Huang, Jiyuan & Madan, Deepa, 2021. "High performance scalable and cost-effective thermoelectric devices fabricated using energy efficient methods and naturally occuring materials," Applied Energy, Elsevier, vol. 294(C).
    2. Wang, Hongyu & Xu, Zhiheng & Yuan, Zicheng & Liu, Kai & Meng, Caifeng & Tang, Xiaobin, 2022. "High-temperature and radiation-resistant spinel-type ferrite coating for thermo-optical conversion in radioisotope thermophotovoltaic generators," Energy, Elsevier, vol. 239(PD).
    3. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2019. "Feasibility analysis of a concentrating photovoltaic-thermoelectric-thermal cogeneration," Applied Energy, Elsevier, vol. 236(C), pages 560-573.
    4. Ge, Minghui & Zhao, Yuntong & Li, Yanzhe & He, Wei & Xie, Liyao & Zhao, Yulong, 2022. "Structural optimization of thermoelectric modules in a concentration photovoltaic–thermoelectric hybrid system," Energy, Elsevier, vol. 244(PB).
    5. Shittu, Samson & Li, Guiqiang & Akhlaghi, Yousef Golizadeh & Ma, Xiaoli & Zhao, Xudong & Ayodele, Emmanuel, 2019. "Advancements in thermoelectric generators for enhanced hybrid photovoltaic system performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 24-54.
    6. Yin, Ershuai & Li, Qiang, 2022. "Achieving extensive lossless coupling of photovoltaic and thermoelectric devices through parallel connection," Renewable Energy, Elsevier, vol. 193(C), pages 565-575.
    7. Wen, Xin & Ji, Jie & Li, Zhaomeng & Song, Zhiying & Yao, Tingting, 2023. "Performance characterization of a PV/T system employing micro-channel heat pipes and thermoelectric generators: An experimental and numerical study," Energy, Elsevier, vol. 264(C).
    8. Tian Zhou & Zhiqiang Sun & Saiwei Li & Huawei Liu & Danqing Yi, 2016. "Design and Optimization of Thermophotovoltaic System Cavity with Mirrors," Energies, MDPI, vol. 9(9), pages 1-11, September.
    9. Hussain, C.M. Iftekhar & Duffy, Aidan & Norton, Brian, 2020. "Thermophotovoltaic systems for achieving high-solar-fraction hybrid solar-biomass power generation," Applied Energy, Elsevier, vol. 259(C).
    10. Luo, Ding & Yan, Yuying & Li, Ying & Wang, Ruochen & Cheng, Shan & Yang, Xuelin & Ji, Dongxu, 2023. "A hybrid transient CFD-thermoelectric numerical model for automobile thermoelectric generator systems," Applied Energy, Elsevier, vol. 332(C).
    11. Peng, Qingguo & Yang, Wenming & E, Jiaqiang & Li, Shaobo & Li, Zhenwei & Xu, Hongpeng & Fu, Guang, 2021. "Effects of propane addition and burner scale on the combustion characteristics and working performance," Applied Energy, Elsevier, vol. 285(C).
    12. Fekadu Tolessa Maremi & Namkyu Lee & Geehong Choi & Taehwan Kim & Hyung Hee Cho, 2018. "Design of Multilayer Ring Emitter Based on Metamaterial for Thermophotovoltaic Applications," Energies, MDPI, vol. 11(9), pages 1-9, August.
    13. Zhang, Jin & Xuan, Yimin, 2019. "The electric feature synergy in the photovoltaic - Thermoelectric hybrid system," Energy, Elsevier, vol. 181(C), pages 387-394.
    14. Liu, H.R. & Li, B.J. & Hua, L.J. & Wang, R.Z., 2022. "Designing thermoelectric self-cooling system for electronic devices: Experimental investigation and model validation," Energy, Elsevier, vol. 243(C).
    15. Luo, Ding & Yan, Yuying & Li, Ying & Yang, Xuelin & Chen, Hao, 2023. "Exhaust channel optimization of the automobile thermoelectric generator to produce the highest net power," Energy, Elsevier, vol. 281(C).
    16. Goswami, Rohtash & Das, Ranjan, 2020. "Waste heat recovery from a biomass heat engine for thermoelectric power generation using two-phase thermosyphons," Renewable Energy, Elsevier, vol. 148(C), pages 1280-1291.
    17. Yu Pan & Bin He & Toni Helm & Dong Chen & Walter Schnelle & Claudia Felser, 2022. "Ultrahigh transverse thermoelectric power factor in flexible Weyl semimetal WTe2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    18. Yuan, Zicheng & Tang, Xiaobin & Xu, Zhiheng & Li, Junqin & Chen, Wang & Liu, Kai & Liu, Yunpeng & Zhang, Zhengrong, 2018. "Screen-printed radial structure micro radioisotope thermoelectric generator," Applied Energy, Elsevier, vol. 225(C), pages 746-754.
    19. Eunhwa Jang & Rohan B. Ambade & Priyanshu Banerjee & L. D. Timmie Topoleski & Deepa Madan, 2024. "Stencil-Printed Scalable Radial Thermoelectric Device Using Sustainable Manufacturing Methods," Sustainability, MDPI, vol. 16(9), pages 1-11, April.
    20. Yang, Wenlong & Jin, Chenchen & Zhu, Wenchao & Li, Yang & Zhang, Rui & Huang, Liang & Xie, Changjun & Shi, Ying, 2024. "Taguchi optimization and thermoelectrical analysis of a pin fin annular thermoelectric generator for automotive waste heat recovery," Renewable Energy, Elsevier, vol. 220(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016239. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.