IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v355y2024ics0306261923015817.html
   My bibliography  Save this article

Towards the integration of distributed renewables: Operation analysis of pumped storage system under off-design condition based on CFD

Author

Listed:
  • Guan, Hongyu
  • Yin, Xiuxing
  • Jiang, Wei

Abstract

Pumped storage plants are increasingly developing to cope with the rapid growth of renewable energy production. Micro-pumped storage (MPS) system is a new storage strategy for distributed energy integration. Centrifugal pump or axial pump replaces conventional pump turbines in this pumped storage system to ensure economic convenience and system flexibility. However, when MPS works in the generating operation mode, the limited high-efficiency range will result in complex hydrodynamic behavior and stability issues under off-design conditions due to renewable integration. At present, the instability mechanism of MPS under off-design conditions is not clear enough, and there is a lack of excellent research methods to analyze this problem. Therefore, this paper firstly introduces the entropy production theory considering the wall effect for visualizing the energy loss. Then the relationship between hydraulic performance and unsteady flow characteristics is established based on the loss characteristics. The results show that the entropy production theory with customized wall functions has higher accuracy and advantages in energy loss analysis compared to the default wall functions. Under partial loading conditions, the spatial-temporal instability of the flow separation point causes a rotating stall within the impeller, which in turn leads to destabilization and a significant reduction in hydraulic performance. Under overload conditions, despite slight changes in hydraulic performance, the most significant pressure fluctuation is six times stronger than the best efficiency point.

Suggested Citation

  • Guan, Hongyu & Yin, Xiuxing & Jiang, Wei, 2024. "Towards the integration of distributed renewables: Operation analysis of pumped storage system under off-design condition based on CFD," Applied Energy, Elsevier, vol. 355(C).
  • Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015817
    DOI: 10.1016/j.apenergy.2023.122217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vagnoni, E. & Andolfatto, L. & Richard, S. & Münch-Alligné, C. & Avellan, F., 2018. "Hydraulic performance evaluation of a micro-turbine with counter rotating runners by experimental investigation and numerical simulation," Renewable Energy, Elsevier, vol. 126(C), pages 943-953.
    2. Boroomandnia, Arezoo & Rismanchi, Behzad & Wu, Wenyan, 2022. "A review of micro hydro systems in urban areas: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Balkhair, Khaled S. & Rahman, Khalil Ur, 2017. "Sustainable and economical small-scale and low-head hydropower generation: A promising alternative potential solution for energy generation at local and regional scale," Applied Energy, Elsevier, vol. 188(C), pages 378-391.
    4. Gao, Xiaoxia & Yang, Hongxing & Lu, Lin, 2016. "Optimization of wind turbine layout position in a wind farm using a newly-developed two-dimensional wake model," Applied Energy, Elsevier, vol. 174(C), pages 192-200.
    5. Ryan Wiser & Karen Jenni & Joachim Seel & Erin Baker & Maureen Hand & Eric Lantz & Aaron Smith, 2016. "Expert elicitation survey on future wind energy costs," Nature Energy, Nature, vol. 1(10), pages 1-8, October.
    6. Bousquet, Cécile & Samora, Irene & Manso, Pedro & Rossi, Luca & Heller, Philippe & Schleiss, Anton J., 2017. "Assessment of hydropower potential in wastewater systems and application to Switzerland," Renewable Energy, Elsevier, vol. 113(C), pages 64-73.
    7. Gu, Yandong & Pei, Ji & Yuan, Shouqi & Wang, Wenjie & Zhang, Fan & Wang, Peng & Appiah, Desmond & Liu, Yong, 2019. "Clocking effect of vaned diffuser on hydraulic performance of high-power pump by using the numerical flow loss visualization method," Energy, Elsevier, vol. 170(C), pages 986-997.
    8. Manzoor Ellahi & Ghulam Abbas & Irfan Khan & Paul Mario Koola & Mashood Nasir & Ali Raza & Umar Farooq, 2019. "Recent Approaches of Forecasting and Optimal Economic Dispatch to Overcome Intermittency of Wind and Photovoltaic (PV) Systems: A Review," Energies, MDPI, vol. 12(22), pages 1-30, November.
    9. Poompavai, T. & Kowsalya, M., 2019. "Control and energy management strategies applied for solar photovoltaic and wind energy fed water pumping system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 108-122.
    10. Margeta, Jure & Glasnovic, Zvonimir, 2010. "Feasibility of the green energy production by hybrid solar + hydro power system in Europe and similar climate areas," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(6), pages 1580-1590, August.
    11. Bracken, L.J. & Bulkeley, H.A. & Maynard, C.M., 2014. "Micro-hydro power in the UK: The role of communities in an emerging energy resource," Energy Policy, Elsevier, vol. 68(C), pages 92-101.
    12. Onu, Uchenna Godswill & Silva, Giuseppe Scabello & Zambroni de Souza, Antonio Carlos & Bonatto, Benedito Donizeti & Ferreira da Costa, Vinicius Braga, 2022. "Integrated design of photovoltaic power generation plant with pumped hydro storage system and irrigation facility at the Uhuelem-Amoncha African community," Renewable Energy, Elsevier, vol. 198(C), pages 1021-1031.
    13. Velasquez-Orta, Sharon B. & Heidrich, Oliver & Black, Ken & Graham, David, 2018. "Retrofitting options for wastewater networks to achieve climate change reduction targets," Applied Energy, Elsevier, vol. 218(C), pages 430-441.
    14. Xiaoran Zhao & Yongyao Luo & Zhengwei Wang & Yexiang Xiao & François Avellan, 2019. "Unsteady Flow Numerical Simulations on Internal Energy Dissipation for a Low-Head Centrifugal Pump at Part-Load Operating Conditions," Energies, MDPI, vol. 12(10), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei, Ji & Shen, Jiawei & Wang, Wenjie & Yuan, Shouqi & Zhao, Jiantao, 2024. "Evaluating hydraulic dissipation in a reversible mixed-flow pump for micro-pumped hydro storage based on entropy production theory," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renzi, Massimiliano & Rudolf, Pavel & Štefan, David & Nigro, Alessandra & Rossi, Mosè, 2019. "Installation of an axial Pump-as-Turbine (PaT) in a wastewater sewer of an oil refinery: A case study," Applied Energy, Elsevier, vol. 250(C), pages 665-676.
    2. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    3. Boroomandnia, Arezoo & Rismanchi, Behzad & Wu, Wenyan, 2022. "A review of micro hydro systems in urban areas: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    4. Zhou, Daqing & Gui, Jia & Deng, Zhiqun Daniel & Chen, Huixiang & Yu, Yunyun & Yu, An & Yang, Chunxia, 2019. "Development of an ultra-low head siphon hydro turbine using computational fluid dynamics," Energy, Elsevier, vol. 181(C), pages 43-50.
    5. Zheng Yuan & Jin Jiang & Jun Zang & Qihu Sheng & Ke Sun & Xuewei Zhang & Renwei Ji, 2020. "A Fast Two-Dimensional Numerical Method for the Wake Simulation of a Vertical Axis Wind Turbine," Energies, MDPI, vol. 14(1), pages 1-21, December.
    6. Cao, Lichao & Ge, Mingwei & Gao, Xiaoxia & Du, Bowen & Li, Baoliang & Huang, Zhi & Liu, Yongqian, 2022. "Wind farm layout optimization to minimize the wake induced turbulence effect on wind turbines," Applied Energy, Elsevier, vol. 323(C).
    7. Kan, Kan & Zhang, Qingying & Xu, Zhe & Zheng, Yuan & Gao, Qiang & Shen, Lian, 2022. "Energy loss mechanism due to tip leakage flow of axial flow pump as turbine under various operating conditions," Energy, Elsevier, vol. 255(C).
    8. Olukunle O. Owolabi & Kathryn Lawson & Sanhita Sengupta & Yingsi Huang & Lan Wang & Chaopeng Shen & Mila Getmansky Sherman & Deborah A. Sunter, 2022. "A Robust Statistical Analysis of the Role of Hydropower on the System Electricity Price and Price Volatility," Papers 2203.02089, arXiv.org.
    9. Muhammad Zeeshan Malik & Haoyong Chen & Muhammad Shahzad Nazir & Irfan Ahmad Khan & Ahmed N. Abdalla & Amjad Ali & Wan Chen, 2020. "A New Efficient Step-Up Boost Converter with CLD Cell for Electric Vehicle and New Energy Systems," Energies, MDPI, vol. 13(7), pages 1-14, April.
    10. Vivar, M. & H, Sharon & Fuentes, M., 2024. "Photovoltaic system adoption in water related technologies – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    11. Ziyu Zhang & Peng Huang & Haocheng Sun, 2020. "A Novel Analytical Wake Model with a Cosine-Shaped Velocity Deficit," Energies, MDPI, vol. 13(13), pages 1-20, June.
    12. Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
    13. Pollini, Nicolò, 2022. "Topology optimization of wind farm layouts," Renewable Energy, Elsevier, vol. 195(C), pages 1015-1027.
    14. Bekker, A. & Van Dijk, M. & Niebuhr, C.M., 2022. "A review of low head hydropower at wastewater treatment works and development of an evaluation framework for South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Zhang, Shaohai & Duan, Huanfeng & Lu, Lin & He, Ruiyang & Gao, Xiaoxia & Zhu, Songye, 2024. "Quantification of three-dimensional added turbulence intensity for the horizontal-axis wind turbine considering the wake anisotropy," Energy, Elsevier, vol. 294(C).
    16. Fei Zhao & Yihan Gao & Tengyuan Wang & Jinsha Yuan & Xiaoxia Gao, 2020. "Experimental Study on Wake Evolution of a 1.5 MW Wind Turbine in a Complex Terrain Wind Farm Based on LiDAR Measurements," Sustainability, MDPI, vol. 12(6), pages 1-14, March.
    17. Abderrazek Saoudi & Saber Krim & Mohamed Faouzi Mimouni, 2021. "Enhanced Intelligent Closed Loop Direct Torque and Flux Control of Induction Motor for Standalone Photovoltaic Water Pumping System," Energies, MDPI, vol. 14(24), pages 1-21, December.
    18. Ge, Mingwei & Wu, Ying & Liu, Yongqian & Li, Qi, 2019. "A two-dimensional model based on the expansion of physical wake boundary for wind-turbine wakes," Applied Energy, Elsevier, vol. 233, pages 975-984.
    19. Zhou, Yuzhou & Zhao, Jiexing & Zhai, Qiaozhu, 2021. "100% renewable energy: A multi-stage robust scheduling approach for cascade hydropower system with wind and photovoltaic power," Applied Energy, Elsevier, vol. 301(C).
    20. Daniel Biner & Vlad Hasmatuchi & Laurent Rapillard & Samuel Chevailler & François Avellan & Cécile Münch-Alligné, 2021. "DuoTurbo: Implementation of a Counter-Rotating Hydroturbine for Energy Recovery in Drinking Water Networks," Sustainability, MDPI, vol. 13(19), pages 1-26, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.