IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v307y2024ics0360544224024551.html
   My bibliography  Save this article

Analysis of power load tracking and regulation performance in a distributed multi-energy coupled system with nuclear and solar sources

Author

Listed:
  • Lou, Juwei
  • Wang, Jiangfeng
  • Chen, Liangqi
  • Wang, Mengxuan
  • Xia, Jiaxi
  • Islam, M.R.
  • Zhao, Pan
  • Chua, K.J.

Abstract

This paper presents a novel distributed multi-energy coupled system that combines solar PV, nuclear power, and energy storage systems to address the power supply challenges in remote regions. Through parameter analysis and multi-objective optimization, the study aims to minimize the need for frequent reactor adjustments during system operation. The key findings indicate that by regulating the rotational speed of the main-compressor, it is possible to meet the power load requirements for a single nuclear power system. The battery capacity and the number of PV panels have a significant impact on the adjustment frequency of the reactor and the power output of the nuclear power system, respectively. The optimal battery capacity is determined to be 183 kWh, while the optimal number of PV panels is 327. These configurations result in an average power output of 20.86 kW for the PV system and 3458.28 kW for nuclear power system. To maximize the utilization of PV energy and minimize reactor adjustments, an energy dispatch strategy is proposed. With the optimal configuration, the adjustment frequency of the reactor decreases to 339 and 276 during the winter and summer months, respectively. Overall, this paper offers a feasible configuration and energy dispatch method for regional power supply.

Suggested Citation

  • Lou, Juwei & Wang, Jiangfeng & Chen, Liangqi & Wang, Mengxuan & Xia, Jiaxi & Islam, M.R. & Zhao, Pan & Chua, K.J., 2024. "Analysis of power load tracking and regulation performance in a distributed multi-energy coupled system with nuclear and solar sources," Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024551
    DOI: 10.1016/j.energy.2024.132681
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224024551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.132681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerkšič, Samo & Vrančić, Damir & Čalič, Dušan & Žerovnik, Gašper & Trkov, Andrej & Kromar, Marjan & Snoj, Luka, 2023. "A perspective of using nuclear power as a dispatchable power source for covering the daily fluctuations of solar power," Energy, Elsevier, vol. 284(C).
    2. Michaelson, D. & Jiang, J., 2021. "Review of integration of small modular reactors in renewable energy microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    3. Guan, Hongyu & Yin, Xiuxing & Jiang, Wei, 2024. "Towards the integration of distributed renewables: Operation analysis of pumped storage system under off-design condition based on CFD," Applied Energy, Elsevier, vol. 355(C).
    4. Seong-Hyeon Ahn & Jin-Hee Hyun & Jin-Ho Choi & Seong-Geun Lee & Gyu-Gwang Kim & Byeong-Gwan Bhang & Hae-Lim Cha & Byeong-Yong Lim & Hoon-Joo Choi & Hyung-Keun Ahn, 2023. "Load-Following Operation of Small Modular Reactors under Unit Commitment Planning with Various Photovoltaic System Conditions," Energies, MDPI, vol. 16(7), pages 1-16, March.
    5. Ho, W.S. & Hashim, H. & Hassim, M.H. & Muis, Z.A. & Shamsuddin, N.L.M., 2012. "Design of distributed energy system through Electric System Cascade Analysis (ESCA)," Applied Energy, Elsevier, vol. 99(C), pages 309-315.
    6. Zhou, Xin & Xu, Haoran & Xiang, Duo & Chen, Jinli & Xiao, Gang, 2022. "Design and modeling of a honeycomb ceramic thermal energy storage for a solar thermal air-Brayton cycle system," Energy, Elsevier, vol. 239(PD).
    7. Bikash Poudel & Linyu Lin & Tyler Phillips & Shannon Eggers & Vivek Agarwal & Timothy McJunkin, 2022. "Operational Resilience of Nuclear-Renewable Integrated-Energy Microgrids," Energies, MDPI, vol. 15(3), pages 1-29, January.
    8. Yang, Jingxian & Liu, Junyong & Qiu, Gao & Liu, Jichun & Jawad, Shafqat & Zhang, Shuai, 2023. "A spatio-temporality-enabled parallel multi-agent-based real-time dynamic dispatch for hydro-PV-PHS integrated power system," Energy, Elsevier, vol. 278(PB).
    9. Tian, Yuyu & Chang, Jianxia & Wang, Yimin & Wang, Xuebin & Zhao, Mingzhe & Meng, Xuejiao & Guo, Aijun, 2022. "A method of short-term risk and economic dispatch of the hydro-thermal-wind-PV hybrid system considering spinning reserve requirements," Applied Energy, Elsevier, vol. 328(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Zhengen & Grozev, George & Higgins, Andrew, 2016. "Modelling impact of PV battery systems on energy consumption and bill savings of Australian houses under alternative tariff structures," Renewable Energy, Elsevier, vol. 89(C), pages 317-330.
    2. Calvin Kong Leng Sing & Jeng Shiun Lim & Timothy Gordon Walmsley & Peng Yen Liew & Masafumi Goto & Sheikh Ahmad Zaki Bin Shaikh Salim, 2020. "Time-Dependent Integration of Solar Thermal Technology in Industrial Processes," Sustainability, MDPI, vol. 12(6), pages 1-32, March.
    3. Thellufsen, Jakob Zinck & Lund, Henrik & Mathiesen, Brian Vad & Østergaard, Poul Alberg & Sorknæs, Peter & Nielsen, Steffen & Madsen, Poul Thøis & Andresen, Gorm Bruun, 2024. "Cost and system effects of nuclear power in carbon-neutral energy systems," Applied Energy, Elsevier, vol. 371(C).
    4. Yong, Wen Ni & Liew, Peng Yen & Woon, Kok Sin & Wan Alwi, Sharifah Rafidah & Klemeš, Jiří Jaromír, 2021. "A pinch-based multi-energy targeting framework for combined chilling heating power microgrid of urban-industrial symbiosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Low, Elaine & Huang, Si-Min & Yang, Minlin & Show, Pau Loke & Law, Chung Lim, 2021. "Design of cascade analysis for renewable and waste heat recovery in a solar thermal regeneration unit of a liquid desiccant dehumidification system," Energy, Elsevier, vol. 235(C).
    6. Alharbi, Talal & Abo-Elyousr, Farag K. & Abdelshafy, Alaaeldin M., 2024. "Efficient Coordination of Renewable Energy Resources through Optimal Reversible Pumped Hydro-Storage Integration for Autonomous Microgrid Economic Operation," Energy, Elsevier, vol. 304(C).
    7. Ma, Chao & Xu, Ximeng & Pang, Xiulan & Li, Xiaofeng & Zhang, Pengfei & Liu, Lu, 2024. "Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty," Applied Energy, Elsevier, vol. 356(C).
    8. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    9. Qiu, Leilei & Liao, Shengyong & Fan, Sui & Sun, Peiwei & Wei, Xinyu, 2023. "Dynamic modelling and control system design of micro-high-temperature gas-cooled reactor with helium brayton cycle," Energy, Elsevier, vol. 278(PB).
    10. Niwagira Daniel & Juyoul Kim, 2022. "A Study on Integrating SMRs into Uganda’s Future Energy System," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    11. Jamaluddin, Khairulnadzmi & Wan Alwi, Sharifah Rafidah & Abd Manan, Zainuddin & Hamzah, Khaidzir & Klemeš, Jiří Jaromír, 2022. "Design of Total Site-Integrated TrigenerationSystem using trigeneration cascade analysis considering transmission losses and sensitivity analysis," Energy, Elsevier, vol. 252(C).
    12. Savić, Aleksandar & Đurišić, Željko, 2014. "Optimal sizing and location of SVC devices for improvement of voltage profile in distribution network with dispersed photovoltaic and wind power plants," Applied Energy, Elsevier, vol. 134(C), pages 114-124.
    13. Nusrat Chowdhury & Chowdhury Akram Hossain & Michela Longo & Wahiba Yaïci, 2020. "Feasibility and Cost Analysis of Photovoltaic-Biomass Hybrid Energy System in Off-Grid Areas of Bangladesh," Sustainability, MDPI, vol. 12(4), pages 1-15, February.
    14. Janghorban Esfahani, Iman & Ifaei, Pouya & Kim, Jinsoo & Yoo, ChangKyoo, 2016. "Design of Hybrid Renewable Energy Systems with Battery/Hydrogen storage considering practical power losses: A MEPoPA (Modified Extended-Power Pinch Analysis)," Energy, Elsevier, vol. 100(C), pages 40-50.
    15. Zhang, Peng & Li, Wenyuan & Li, Sherwin & Wang, Yang & Xiao, Weidong, 2013. "Reliability assessment of photovoltaic power systems: Review of current status and future perspectives," Applied Energy, Elsevier, vol. 104(C), pages 822-833.
    16. Karla Miranda & Ana Victoria Tarín-Santiso & Armando Llamas-Terrés & Oliver Probst, 2022. "The Electricity Generation Dispatch in Mexico: An Uncertain Road towards Sustainability," Energies, MDPI, vol. 15(23), pages 1-24, November.
    17. Jiang, Yinghua & Kang, Lixia & Liu, Yongzhong, 2020. "Optimal configuration of battery energy storage system with multiple types of batteries based on supply-demand characteristics," Energy, Elsevier, vol. 206(C).
    18. Wang, Huan & Liao, Shengli & Liu, Benxi & Zhao, Hongye & Ma, Xiangyu & Zhou, Binbin, 2024. "Long-term complementary scheduling model of hydro-wind-solar under extreme drought weather conditions using an improved time-varying hedging rule," Energy, Elsevier, vol. 305(C).
    19. Mohd Effendi Amran & Mohd Nabil Muhtazaruddin & Firdaus Muhammad-Sukki & Nurul Aini Bani & Tauran Zaidi Ahmad Zaidi & Khairul Azmy Kamaluddin & Jorge Alfredo Ardila-Rey, 2019. "Photovoltaic Expansion-Limit through a Net Energy Metering Scheme for Selected Malaysian Public Hospitals," Sustainability, MDPI, vol. 11(18), pages 1-30, September.
    20. Janghorban Esfahani, Iman & Lee, SeungChul & Yoo, ChangKyoo, 2015. "Extended-power pinch analysis (EPoPA) for integration of renewable energy systems with battery/hydrogen storages," Renewable Energy, Elsevier, vol. 80(C), pages 1-14.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:307:y:2024:i:c:s0360544224024551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.