IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs0306261923015350.html
   My bibliography  Save this article

Scaled-up aqueous redox flow battery using anthraquinone negalyte and vanadium posilyte with inorganic additive

Author

Listed:
  • Park, Gyunho
  • Jeong, Hayoung
  • Lee, Wonmi
  • Han, Jeong Woo
  • Chang, Duck Rye
  • Kwon, Yongchai

Abstract

In this study, one kilowatt aqueous redox flow battery (ARFB) using anthraquinone-2,7-disulfonic acid (2,7-AQDS) and vanadium oxide sulfate (VOSO4) as active materials for negalyte (negative electrolyte) and posilyte (positive electrolyte) is successfully accomplished. Then, manganese sulfate (MnSO4) is further included in negalyte to increase reactivity of active materials and to suppress their crossover by controlling their osmotic pressure. This binary effects of MnSO4 are predicted by density functional theory and reduction in concentration gap. The decrease in energy band gap of 2,7-AQDS with MnSO4 facilitated electron transfer rate. Anodic and cathodic diffusion coefficient and reaction rate constant are also improved. More specifically, with adoption of MnSO4 additive, energy efficiency and capacity retention rate of ARFB single cells operated with MnSO4 additive are improved from 79.1 to 83.9% at the current density of 40 mA cm−2 and from 82 to 88% at the current density of 80 mA cm−2 after 100 cycles. Based on that, ARFB stack using 2,7-AQDS and VOSO4 with MnSO4 additive is prepared and this ARFB stack exhibits a high power of 1.15 kW.

Suggested Citation

  • Park, Gyunho & Jeong, Hayoung & Lee, Wonmi & Han, Jeong Woo & Chang, Duck Rye & Kwon, Yongchai, 2024. "Scaled-up aqueous redox flow battery using anthraquinone negalyte and vanadium posilyte with inorganic additive," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015350
    DOI: 10.1016/j.apenergy.2023.122171
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122171?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian Huskinson & Michael P. Marshak & Changwon Suh & Süleyman Er & Michael R. Gerhardt & Cooper J. Galvin & Xudong Chen & Alán Aspuru-Guzik & Roy G. Gordon & Michael J. Aziz, 2014. "A metal-free organic–inorganic aqueous flow battery," Nature, Nature, vol. 505(7482), pages 195-198, January.
    2. Trovò, Andrea & Alotto, Piergiorgio & Giomo, Monica & Moro, Federico & Guarnieri, Massimo, 2021. "A validated dynamical model of a kW-class Vanadium Redox Flow Battery," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 183(C), pages 66-77.
    3. Withey, Patrick & Johnston, Craig & Guo, Jinggang, 2019. "Quantifying the global warming potential of carbon dioxide emissions from bioenergy with carbon capture and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    4. Connolly, D. & Lund, H. & Mathiesen, B.V. & Pican, E. & Leahy, M., 2012. "The technical and economic implications of integrating fluctuating renewable energy using energy storage," Renewable Energy, Elsevier, vol. 43(C), pages 47-60.
    5. Aaron Hollas & Xiaoliang Wei & Vijayakumar Murugesan & Zimin Nie & Bin Li & David Reed & Jun Liu & Vincent Sprenkle & Wei Wang, 2018. "A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries," Nature Energy, Nature, vol. 3(6), pages 508-514, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Mengjun & Karthick, Ramalingam & Wei, Qiang & Dai, Jinhong & Jiang, Zhuosheng & Chen, Xuncai & Oo, Than Zaw & Aung, Su Htike & Chen, Fuming, 2022. "The progress and prospect of the solar-driven photoelectrochemical desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    2. Ma, Tao & Yang, Hongxing & Lu, Lin & Peng, Jinqing, 2014. "Technical feasibility study on a standalone hybrid solar-wind system with pumped hydro storage for a remote island in Hong Kong," Renewable Energy, Elsevier, vol. 69(C), pages 7-15.
    3. Aste, Niccolò & Adhikari, R.S. & Manfren, Massimiliano, 2013. "Cost optimal analysis of heat pump technology adoption in residential reference buildings," Renewable Energy, Elsevier, vol. 60(C), pages 615-624.
    4. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    5. Xie, Heping & Wu, Yifan & Liu, Tao & Wang, Fuhuan & Chen, Bin & Liang, Bin, 2020. "Low-energy-consumption electrochemical CO2 capture driven by biomimetic phenazine derivatives redox medium," Applied Energy, Elsevier, vol. 259(C).
    6. Solomon, A.A. & Kammen, Daniel M. & Callaway, D., 2016. "Investigating the impact of wind–solar complementarities on energy storage requirement and the corresponding supply reliability criteria," Applied Energy, Elsevier, vol. 168(C), pages 130-145.
    7. You, Wei & Geng, Yong & Dong, Huijuan & Wilson, Jeffrey & Pan, Hengyu & Wu, Rui & Sun, Lu & Zhang, Xi & Liu, Zhiqing, 2018. "Technical and economic assessment of RES penetration by modelling China's existing energy system," Energy, Elsevier, vol. 165(PB), pages 900-910.
    8. Kinsella, L. & Stefaniec, A. & Foley, A. & Caulfield, B., 2023. "Pathways to decarbonising the transport sector: The impacts of electrifying taxi fleets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 174(C).
    9. Rodriguez, Rolando A. & Becker, Sarah & Greiner, Martin, 2015. "Cost-optimal design of a simplified, highly renewable pan-European electricity system," Energy, Elsevier, vol. 83(C), pages 658-668.
    10. Pedro Macedo & Mara Madaleno, 2022. "Global Temperature and Carbon Dioxide Nexus: Evidence from a Maximum Entropy Approach," Energies, MDPI, vol. 16(1), pages 1-13, December.
    11. Guido Francesco Frate & Lorenzo Ferrari & Umberto Desideri, 2020. "Rankine Carnot Batteries with the Integration of Thermal Energy Sources: A Review," Energies, MDPI, vol. 13(18), pages 1-28, September.
    12. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Bozzi, Silvia & Archetti, Renata & Passoni, Giuseppe, 2014. "Wave electricity production in Italian offshore: A preliminary investigation," Renewable Energy, Elsevier, vol. 62(C), pages 407-416.
    14. Arévalo, Paúl & Cano, Antonio & Jurado, Francisco, 2022. "Mitigation of carbon footprint with 100% renewable energy system by 2050: The case of Galapagos islands," Energy, Elsevier, vol. 245(C).
    15. Huang, Jiashun & Li, Weiping & Guo, Lijia & Hu, Xi & Hall, Jim W., 2020. "Renewable energy and household economy in rural China," Renewable Energy, Elsevier, vol. 155(C), pages 669-676.
    16. Brigagão, George Victor & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F. & Mikulčić, Hrvoje & Duić, Neven, 2021. "A zero-emission sustainable landfill-gas-to-wire oxyfuel process: Bioenergy with carbon capture and sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    17. Becker, Sarah & Frew, Bethany A. & Andresen, Gorm B. & Zeyer, Timo & Schramm, Stefan & Greiner, Martin & Jacobson, Mark Z., 2014. "Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions," Energy, Elsevier, vol. 72(C), pages 443-458.
    18. Jeongyoon Oh & Taehoon Hong & Hakpyeong Kim & Jongbaek An & Kwangbok Jeong & Choongwan Koo, 2017. "Advanced Strategies for Net-Zero Energy Building: Focused on the Early Phase and Usage Phase of a Building’s Life Cycle," Sustainability, MDPI, vol. 9(12), pages 1-52, December.
    19. Pimm, Andrew J. & Garvey, Seamus D. & de Jong, Maxim, 2014. "Design and testing of Energy Bags for underwater compressed air energy storage," Energy, Elsevier, vol. 66(C), pages 496-508.
    20. Galán-Martín, Ángel & Contreras, María del Mar & Romero, Inmaculada & Ruiz, Encarnación & Bueno-Rodríguez, Salvador & Eliche-Quesada, Dolores & Castro-Galiano, Eulogio, 2022. "The potential role of olive groves to deliver carbon dioxide removal in a carbon-neutral Europe: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s0306261923015350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.