IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipbs030626192301526x.html
   My bibliography  Save this article

A cooperative transactive multi-carrier energy control mechanism with P2P energy + reserve trading using Nash bargaining game theory under renewables uncertainty

Author

Listed:
  • Alizadeh, Ali
  • Esfahani, Moein
  • Dinar, Farid
  • Kamwa, Innocent
  • Moeini, Ali
  • Mohseni-Bonab, Seyed Masoud
  • Busvelle, Eric

Abstract

Transactive Energy Control (TEC) as a market-based control is a critical notion for scheduling Multi-Carrier Energy Systems (MCESs) in local networks and forming an Energy Hub (EH). Nevertheless, implementing TEC for scheduling and controlling MCESs is extremely difficult due to the lack of a cooperative TEC model that accounts for network constraints and the uncertainty of Renewable Energy Sources (RESs). This paper defines and formulates Prosumer-Based Multi-Carrier Energy Systems (PB-MCESs), which include electricity, heat, cooling, and gas hubs to enable internal coordination of resources and flexibility extraction for PB-MCESs. Subsequently, Nash Bargaining Game Theory is employed to construct a cooperative TEC that prioritizes P2P energy trade. In addition to P2P energy trading, PB-MCESs can trade their reserve in a P2P fashion to mitigate their uncertainty. PB-MCESs estimate the level of uncertainty using stochastic programming and allot a reserve capacity based on this estimation in order to manage their uncertainty via P2P reserve trading and internal reserves. PB-MCES can also control their risk by altering their risk-taking factor in accordance with the Conditional Value-at-Risk (CVAR) index. Implementations have demonstrated that the proposed cooperative TEC decreases total costs by 17.14% and that the proposed P2P reserve trading reduces total costs by 16.32%.

Suggested Citation

  • Alizadeh, Ali & Esfahani, Moein & Dinar, Farid & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud & Busvelle, Eric, 2024. "A cooperative transactive multi-carrier energy control mechanism with P2P energy + reserve trading using Nash bargaining game theory under renewables uncertainty," Applied Energy, Elsevier, vol. 353(PB).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pb:s030626192301526x
    DOI: 10.1016/j.apenergy.2023.122162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192301526X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gan, Wei & Yan, Mingyu & Yao, Wei & Wen, Jinyu, 2021. "Peer to peer transactive energy for multiple energy hub with the penetration of high-level renewable energy," Applied Energy, Elsevier, vol. 295(C).
    2. Mohseni-Bonab, Seyed Masoud & Kamwa, Innocent & Rabiee, Abbas & Chung, C.Y., 2022. "Stochastic optimal transmission Switching: A novel approach to enhance power grid security margins through vulnerability mitigation under renewables uncertainties," Applied Energy, Elsevier, vol. 305(C).
    3. Nasiri, Nima & Mansour Saatloo, Amin & Mirzaei, Mohammad Amin & Ravadanegh, Sajad Najafi & Zare, Kazem & Mohammadi-ivatloo, Behnam & Marzband, Mousa, 2023. "A robust bi-level optimization framework for participation of multi-energy service providers in integrated power and natural gas markets," Applied Energy, Elsevier, vol. 340(C).
    4. Javadi, Mohammad Sadegh & Esmaeel Nezhad, Ali & Jordehi, Ahmad Rezaee & Gough, Matthew & Santos, Sérgio F. & Catalão, João P.S., 2022. "Transactive energy framework in multi-carrier energy hubs: A fully decentralized model," Energy, Elsevier, vol. 238(PB).
    5. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    6. Najafi, Arsalan & Pourakbari-Kasmaei, Mahdi & Jasinski, Michal & Contreras, Javier & Lehtonen, Matti & Leonowicz, Zbigniew, 2022. "The role of EV based peer-to-peer transactive energy hubs in distribution network optimization," Applied Energy, Elsevier, vol. 319(C).
    7. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Integrated prosumers–DSO approach applied in peer-to-peer energy and reserve tradings considering network constraints," Applied Energy, Elsevier, vol. 317(C).
    8. Li, Zhengmao & Wu, Lei & Xu, Yan & Wang, Luhao & Yang, Nan, 2023. "Distributed tri-layer risk-averse stochastic game approach for energy trading among multi-energy microgrids," Applied Energy, Elsevier, vol. 331(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei, Yu & Ali, Mazhar & Khan, Imran Ali & Yinling, Wang & Mostafa, Aziz, 2024. "Presenting a model for decentralized operation based on the internet of things in a system multiple microgrids," Energy, Elsevier, vol. 293(C).
    2. Bożena Gajdzik & Magdalena Jaciow & Radosław Wolniak & Robert Wolny & Wieslaw Wes Grebski, 2024. "Diagnosis of the Development of Energy Cooperatives in Poland—A Case Study of a Renewable Energy Cooperative in the Upper Silesian Region," Energies, MDPI, vol. 17(3), pages 1-27, January.
    3. Chen, Yuzhu & Guo, Weimin & Du, Na & Yang, Kun & Wang, Jiangjiang, 2024. "Master slave game-based optimization of an off-grid combined cooling and power system coupled with solar thermal and photovoltaics considering carbon cost allocation," Renewable Energy, Elsevier, vol. 229(C).
    4. Barone, G. & Buonomano, A. & Cipolla, G. & Forzano, C. & Giuzio, G.F. & Russo, G., 2024. "Designing aggregation criteria for end-users integration in energy communities: Energy and economic optimisation based on hybrid neural networks models," Applied Energy, Elsevier, vol. 371(C).
    5. Tang, Bao-Jun & Cao, Xi-Lin & Li, Ru & Xiang, Zhi-Bo & Zhang, Sen, 2024. "Economic and low-carbon planning for interconnected integrated energy systems considering emerging technologies and future development trends," Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh, Ali & Kamwa, Innocent & Moeini, Ali & Mohseni-Bonab, Seyed Masoud, 2023. "Energy management in microgrids using transactive energy control concept under high penetration of Renewables; A survey and case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    2. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K. & Yuen, Chau & Smith, David, 2022. "Peer-to-peer kilowatt and negawatt trading: A review of challenges and recent advances in distribution networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    3. Qiu, Dawei & Xue, Juxing & Zhang, Tingqi & Wang, Jianhong & Sun, Mingyang, 2023. "Federated reinforcement learning for smart building joint peer-to-peer energy and carbon allowance trading," Applied Energy, Elsevier, vol. 333(C).
    4. Luiz Almeida & Ana Soares & Pedro Moura, 2023. "A Systematic Review of Optimization Approaches for the Integration of Electric Vehicles in Public Buildings," Energies, MDPI, vol. 16(13), pages 1-26, June.
    5. Tan, Bifei & Chen, Simin & Liang, Zipeng & Zheng, Xiaodong & Zhu, Yanjin & Chen, Haoyong, 2024. "An iteration-free hierarchical method for the energy management of multiple-microgrid systems with renewable energy sources and electric vehicles," Applied Energy, Elsevier, vol. 356(C).
    6. Tan, Bifei & Lin, Zhenjia & Zheng, Xiaodong & Xiao, Fu & Wu, Qiuwei & Yan, Jinyue, 2023. "Distributionally robust energy management for multi-microgrids with grid-interactive EVs considering the multi-period coupling effect of user behaviors," Applied Energy, Elsevier, vol. 350(C).
    7. Mohammad Javad Bordbari & Fuzhan Nasiri, 2024. "Networked Microgrids: A Review on Configuration, Operation, and Control Strategies," Energies, MDPI, vol. 17(3), pages 1-28, February.
    8. Hutty, Timothy D. & Brown, Solomon, 2024. "P2P trading of heat and power via a continuous double auction," Applied Energy, Elsevier, vol. 369(C).
    9. Maurer, Jona & Tschuch, Nicolai & Krebs, Stefan & Bhattacharya, Kankar & Cañizares, Claudio & Hohmann, Sören, 2023. "Toward transactive control of coupled electric power and district heating networks," Applied Energy, Elsevier, vol. 332(C).
    10. Molin An & Xueshan Han & Tianguang Lu, 2024. "A Stochastic Model Predictive Control Method for Tie-Line Power Smoothing under Uncertainty," Energies, MDPI, vol. 17(14), pages 1-17, July.
    11. Mehdinejad, Mehdi & Shayanfar, Heidarali & Mohammadi-Ivatloo, Behnam, 2022. "Decentralized blockchain-based peer-to-peer energy-backed token trading for active prosumers," Energy, Elsevier, vol. 244(PA).
    12. Xie, Xuehua & Qian, Tong & Li, Weiwei & Tang, Wenhu & Xu, Zhao, 2024. "An individualized adaptive distributed approach for fast energy-carbon coordination in transactive multi-community integrated energy systems considering power transformer loading capacity," Applied Energy, Elsevier, vol. 375(C).
    13. Hua, Zhihao & Li, Jiayong & Zhou, Bin & Or, Siu Wing & Chan, Ka Wing & Meng, Yunfan, 2022. "Game-theoretic multi-energy trading framework for strategic biogas-solar renewable energy provider with heterogeneous consumers," Energy, Elsevier, vol. 260(C).
    14. Liu, Zhouding & Nazari-Heris, Morteza, 2023. "Optimal bidding strategy of multi-carrier systems in electricity markets using information gap decision theory," Energy, Elsevier, vol. 280(C).
    15. Shang, Yitong & Li, Sen, 2024. "FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data," Applied Energy, Elsevier, vol. 358(C).
    16. Wang, Haibing & Zhao, Anjie & Khan, Muhammad Qasim & Sun, Weiqing, 2024. "Optimal operation of energy hub considering reward-punishment ladder carbon trading and electrothermal demand coupling," Energy, Elsevier, vol. 286(C).
    17. Yantao Wang & Yinhan Zhang & Xuesong Qi & Meiqi Wang & Xinyue Wang, 2023. "A Bi-Level Optimization Model for Virtual Power Plant Membership Selection Considering Load Time Series," Sustainability, MDPI, vol. 15(3), pages 1-15, January.
    18. Mansouri, S.A. & Ahmarinejad, A. & Nematbakhsh, E. & Javadi, M.S. & Esmaeel Nezhad, A. & Catalão, J.P.S., 2022. "A sustainable framework for multi-microgrids energy management in automated distribution network by considering smart homes and high penetration of renewable energy resources," Energy, Elsevier, vol. 245(C).
    19. Esmaeil Valipour & Ramin Nourollahi & Kamran Taghizad-Tavana & Sayyad Nojavan & As’ad Alizadeh, 2022. "Risk Assessment of Industrial Energy Hubs and Peer-to-Peer Heat and Power Transaction in the Presence of Electric Vehicles," Energies, MDPI, vol. 15(23), pages 1-24, November.
    20. Long Wang, 2023. "Optimal Scheduling Strategy for Multi-Energy Microgrid Considering Integrated Demand Response," Energies, MDPI, vol. 16(12), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pb:s030626192301526x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.