IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v352y2023ics0306261923013296.html
   My bibliography  Save this article

Impact of liquefaction ratio and cold energy recovery on liquefied natural gas production

Author

Listed:
  • Han, Donggu
  • Tak, Kyungjae
  • Park, Jaedeuk
  • Lee, Ki Bong
  • Moon, Jong-Ho
  • Lee, Ung

Abstract

The partial liquefaction of natural gas (NG) is commonly conducted in the liquefied natural gas (LNG) industry toward facilitating the use of non-liquefied gas for power generation and utility systems, while simultaneously achieving the desired heating value of LNG. This study investigated the impact of the partial liquefaction of NG and the recovery of cold energy from non-liquefied gas on the efficiency of the liquefaction process, in terms of specific work. The optimal liquefaction ratio (LR) with no recovery was 64.2% (778.7 kJ/kg LNG), which is 21.7% reduction of specific work in relation to that achieved through full liquefaction (995.0 kJ/kg LNG). The result showed a trade-off relationship between a higher LR to compensate energy consumption for cooling NG to its dew-point temperature with no liquid production and produce flash gas at a cryogenic temperature and lower LR to avoid the liquefaction of light components, which are difficult to condense. However, this trade-off resolved upon cold energy recovery, because there was no energy consumption until an LR of 8.1% could be achieved through an expansion of high-pressure NG feed by the recovery. For practical reason, a case study was conducted with lower bounds of the LR at 85%, 90%, and 95%. The findings of this study can guide the decision-making of future LNG projects for an optimal LR.

Suggested Citation

  • Han, Donggu & Tak, Kyungjae & Park, Jaedeuk & Lee, Ki Bong & Moon, Jong-Ho & Lee, Ung, 2023. "Impact of liquefaction ratio and cold energy recovery on liquefied natural gas production," Applied Energy, Elsevier, vol. 352(C).
  • Handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013296
    DOI: 10.1016/j.apenergy.2023.121965
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923013296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121965?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Ung & Mitsos, Alexander, 2017. "Optimal multicomponent working fluid of organic Rankine cycle for exergy transfer from liquefied natural gas regasification," Energy, Elsevier, vol. 127(C), pages 489-501.
    2. Jin, Chunhe & Yuan, Yilong & Son, Heechang & Lim, Youngsub, 2022. "Novel propane-free mixed refrigerant integrated with nitrogen expansion natural gas liquefaction process for offshore units," Energy, Elsevier, vol. 238(PA).
    3. Almeida-Trasvina, Fernando & Smith, Robin, 2023. "Design and optimisation of novel cascade mixed refrigerant cycles for LNG production – Part II: Novel cascade configurations," Energy, Elsevier, vol. 266(C).
    4. He, Tianbiao & Mao, Ning & Liu, Zuming & Qyyum, Muhammad Abdul & Lee, Moonyong & Pravez, Ashak Mahmud, 2020. "Impact of mixed refrigerant selection on energy and exergy performance of natural gas liquefaction processes," Energy, Elsevier, vol. 199(C).
    5. Katebah, Mary A. & Hussein, Mohamed M. & Al-musleh, Easa I. & Almomani, Fares, 2023. "A systematic optimization approach of an actual LNG plant: Power savings and enhanced process economy," Energy, Elsevier, vol. 269(C).
    6. Santos, Lucas F. & Costa, Caliane B.B. & Caballero, José A. & Ravagnani, Mauro A.S.S., 2023. "Multi-objective simulation–optimization via kriging surrogate models applied to natural gas liquefaction process design," Energy, Elsevier, vol. 262(PB).
    7. Marmolejo-Correa, Danahe & Gundersen, Truls, 2012. "A comparison of exergy efficiency definitions with focus on low temperature processes," Energy, Elsevier, vol. 44(1), pages 477-489.
    8. Tak, Kyungjae & Park, Jaedeuk & Moon, Il & Lee, Ung, 2023. "Comparison of mixed refrigerant cycles for natural gas liquefaction: From single mixed refrigerant to mixed fluid cascade processes," Energy, Elsevier, vol. 272(C).
    9. Khan, Mohd Shariq & Lee, Sanggyu & Rangaiah, G.P. & Lee, Moonyong, 2013. "Knowledge based decision making method for the selection of mixed refrigerant systems for energy efficient LNG processes," Applied Energy, Elsevier, vol. 111(C), pages 1018-1031.
    10. Zhang, Qiang & Zhang, Ningqi & Zhu, Shengbo & Heydarian, Dariush, 2023. "Thermodynamic simulation and optimization of natural gas liquefaction cycle based on the common structure of organic rankine cycle," Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qyyum, Muhammad Abdul & Ahmed, Faisal & Nawaz, Alam & He, Tianbiao & Lee, Moonyong, 2021. "Teaching-learning self-study approach for optimal retrofitting of dual mixed refrigerant LNG process: Energy and exergy perspective," Applied Energy, Elsevier, vol. 298(C).
    2. Lin, Wensheng & Xiong, Xiaojun & Gu, Anzhong, 2018. "Optimization and thermodynamic analysis of a cascade PLNG (pressurized liquefied natural gas) process with CO2 cryogenic removal," Energy, Elsevier, vol. 161(C), pages 870-877.
    3. Sarfaraz, Bisma & Kazmi, Bilal & Taqvi, Syed Ali Ammar & Raza, Faizan & Rashid, Rushna & Siddiqui, Leenah & Zehra, Syeda Fatima & Bokhari, Awais & Jaromír Klemeš, Jiří & Ouladsmane, Mohamed, 2023. "Thermodynamic evaluation of mixed refrigerant selection in dual mixed refrigerant NG liquefaction process with respect to 3E's (Energy, Exergy, Economics)," Energy, Elsevier, vol. 283(C).
    4. Khaliq Majeed & Muhammad Abdul Qyyum & Alam Nawaz & Ashfaq Ahmad & Muhammad Naqvi & Tianbiao He & Moonyong Lee, 2020. "Shuffled Complex Evolution-Based Performance Enhancement and Analysis of Cascade Liquefaction Process for Large-Scale LNG Production," Energies, MDPI, vol. 13(10), pages 1-20, May.
    5. Son, Heechang & Austbø, Bjørn & Gundersen, Truls & Hwang, Jihyun & Lim, Youngsub, 2022. "Techno-economic versus energy optimization of natural gas liquefaction processes with different heat exchanger technologies," Energy, Elsevier, vol. 245(C).
    6. Tak, Kyungjae & Park, Jaedeuk & Moon, Il & Lee, Ung, 2023. "Comparison of mixed refrigerant cycles for natural gas liquefaction: From single mixed refrigerant to mixed fluid cascade processes," Energy, Elsevier, vol. 272(C).
    7. Sanavandi, Hamid & Mafi, Mostafa & Ziabasharhagh, Masoud, 2019. "Normalized sensitivity analysis of LNG processes - Case studies: Cascade and single mixed refrigerant systems," Energy, Elsevier, vol. 188(C).
    8. Huster, Wolfgang R. & Schweidtmann, Artur M. & Mitsos, Alexander, 2020. "Globally optimal working fluid mixture composition for geothermal power cycles," Energy, Elsevier, vol. 212(C).
    9. Mohd Shariq Khan & Muhammad Abdul Qyyum & Wahid Ali & Aref Wazwaz & Khursheed B. Ansari & Moonyong Lee, 2020. "Energy Saving through Efficient BOG Prediction and Impact of Static Boil-off-Rate in Full Containment-Type LNG Storage Tank," Energies, MDPI, vol. 13(21), pages 1-14, October.
    10. Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
    11. He, Tianbiao & Zhou, Zhongming & Mao, Ning & Qyyum, Muhammad Abdul, 2024. "Transcritical CO2 precooled single mixed refrigerant natural gas liquefaction process: Exergy and Exergoeconomic optimization," Energy, Elsevier, vol. 294(C).
    12. Xi, Huan & Zhang, Honghu & He, Ya-Ling & Huang, Zuohua, 2019. "Sensitivity analysis of operation parameters on the system performance of organic rankine cycle system using orthogonal experiment," Energy, Elsevier, vol. 172(C), pages 435-442.
    13. Cao, Xuewen & Yang, Jian & Zhang, Yue & Gao, Song & Bian, Jiang, 2022. "Process optimization, exergy and economic analysis of boil-off gas re-liquefaction processes for LNG carriers," Energy, Elsevier, vol. 242(C).
    14. Yoonho, Lee, 2019. "LNG-FSRU cold energy recovery regasification using a zeotropic mixture of ethane and propane," Energy, Elsevier, vol. 173(C), pages 857-869.
    15. Muhammad Abdul Qyyum & Yus Donald Chaniago & Wahid Ali & Hammad Saulat & Moonyong Lee, 2020. "Membrane-Assisted Removal of Hydrogen and Nitrogen from Synthetic Natural Gas for Energy-Efficient Liquefaction," Energies, MDPI, vol. 13(19), pages 1-18, September.
    16. Flórez-Orrego, Daniel & de Oliveira Junior, Silvio, 2016. "On the efficiency, exergy costs and CO2 emission cost allocation for an integrated syngas and ammonia production plant," Energy, Elsevier, vol. 117(P2), pages 341-360.
    17. Araghi, Alireza Hosseini & Khiadani, Mehdi & Hooman, Kamel, 2016. "A novel vacuum discharge thermal energy combined desalination and power generation system utilizing R290/R600a," Energy, Elsevier, vol. 98(C), pages 215-224.
    18. Tak, Kyungjae & Choi, Jiwon & Ryu, Jun-Hyung & Moon, Il, 2020. "Sensitivity analysis of effects of design parameters and decision variables on optimization of natural gas liquefaction process," Energy, Elsevier, vol. 206(C).
    19. Baccanelli, Margaret & Langé, Stefano & Rocco, Matteo V. & Pellegrini, Laura A. & Colombo, Emanuela, 2016. "Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis," Applied Energy, Elsevier, vol. 180(C), pages 546-559.
    20. Mohammed Khennich & Mikhail Sorin & Nicolas Galanis, 2016. "Exergy Flows inside a One Phase Ejector for Refrigeration Systems," Energies, MDPI, vol. 9(3), pages 1-10, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:352:y:2023:i:c:s0306261923013296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.