IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v351y2023ics0306261923012710.html
   My bibliography  Save this article

Studying the performance of a pilot scale vacuum-based membrane dehumidifier

Author

Listed:
  • Bui, T.D.
  • Chen, W.D.
  • Islam, M.R.
  • Zhao, D.
  • Chua, K.J.

Abstract

Research on vacuum-based membrane dehumidification (VMD) has gained significant traction due to it being an efficient isothermal and eco-friendly process. However, most research works are focused on studying well-defined lab-scale membrane dehumidifiers. Therefore, key results on larger-size membrane dehumidifiers are far and few. In this work, a large-scale pilot-scale vacuum membrane prototype is developed and tested for the purpose of achieving high-performing air dehumidification in tropical climate conditions. The membrane prototype comprises 78 m2 of a flat-sheet composite membrane which possesses a high water vapor permeance and selectivity. It is able to remove 25 kg/h of water vapor from input humid air with a dehumidification COP of 2. This COP is much higher than that of a conventional desiccant dehumidifier and reaches 85% of the theoretical COP limit of a single stage pumping vacuum membrane dehumidifier. It is expected that a dehumidification COP of up to 16 can be achieved when this membrane prototype is coupled with a pumping-condensing system with high operating efficacy. The developed VMD system has highly stable performance in 8-week operation test.

Suggested Citation

  • Bui, T.D. & Chen, W.D. & Islam, M.R. & Zhao, D. & Chua, K.J., 2023. "Studying the performance of a pilot scale vacuum-based membrane dehumidifier," Applied Energy, Elsevier, vol. 351(C).
  • Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012710
    DOI: 10.1016/j.apenergy.2023.121907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923012710
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rafique, M. Mujahid & Gandhidasan, P. & Bahaidarah, Haitham M.S., 2016. "Liquid desiccant materials and dehumidifiers – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 179-195.
    2. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    3. Chua, K.J. & Chou, S.K. & Yang, W.M. & Yan, J., 2013. "Achieving better energy-efficient air conditioning – A review of technologies and strategies," Applied Energy, Elsevier, vol. 104(C), pages 87-104.
    4. Liu, M. & Prabakaran, V. & Bui, T. & Cheng, G.G. & Pang, W., 2023. "Three-dimensional numerical analysis of fin-tube desiccant-coated heat exchanger for air dehumidification in tropics," Applied Energy, Elsevier, vol. 331(C).
    5. Bui, D.T. & Vivekh, P. & Islam, M.R. & Chua, K.J., 2022. "Studying the characteristics and energy performance of a composite hollow membrane for air dehumidification," Applied Energy, Elsevier, vol. 306(PB).
    6. Bui, Duc Thuan & Kum Ja, M. & Gordon, Jeffrey M. & Ng, Kim Choon & Chua, Kian Jon, 2017. "A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification," Energy, Elsevier, vol. 132(C), pages 106-115.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fix, Andrew J. & Oh, Jinwoo & Braun, James E. & Warsinger, David M., 2024. "Dual-module humidity pump for efficient air dehumidification: Demonstration and performance limitations," Applied Energy, Elsevier, vol. 360(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fix, Andrew J. & Oh, Jinwoo & Braun, James E. & Warsinger, David M., 2024. "Dual-module humidity pump for efficient air dehumidification: Demonstration and performance limitations," Applied Energy, Elsevier, vol. 360(C).
    2. Yang, Yifan & Cui, Gary & Lan, Christopher Q., 2019. "Developments in evaporative cooling and enhanced evaporative cooling - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Bui, D.T. & Vivekh, P. & Islam, M.R. & Chua, K.J., 2022. "Studying the characteristics and energy performance of a composite hollow membrane for air dehumidification," Applied Energy, Elsevier, vol. 306(PB).
    4. Vivekh, P. & Kumja, M. & Bui, D.T. & Chua, K.J., 2018. "Recent developments in solid desiccant coated heat exchangers – A review," Applied Energy, Elsevier, vol. 229(C), pages 778-803.
    5. Thu, K. & Mitra, S. & Saha, B.B. & Srinivasa Murthy, S., 2018. "Thermodynamic feasibility evaluation of hybrid dehumidification – mechanical vapour compression systems," Applied Energy, Elsevier, vol. 213(C), pages 31-44.
    6. Cui, X. & Islam, M.R. & Chua, K.J., 2019. "Experimental study and energy saving potential analysis of a hybrid air treatment cooling system in tropical climates," Energy, Elsevier, vol. 172(C), pages 1016-1026.
    7. Bui, Duc Thuan & Kum Ja, M. & Gordon, Jeffrey M. & Ng, Kim Choon & Chua, Kian Jon, 2017. "A thermodynamic perspective to study energy performance of vacuum-based membrane dehumidification," Energy, Elsevier, vol. 132(C), pages 106-115.
    8. Chen, Q. & Kum Ja, M. & Li, Y. & Chua, K.J., 2018. "Thermodynamic optimization of a vacuum multi-effect membrane distillation system for liquid desiccant regeneration," Applied Energy, Elsevier, vol. 230(C), pages 960-973.
    9. Xin Cui & Le Sun & Sicong Zhang & Liwen Jin, 2019. "On the Study of a Hybrid Indirect Evaporative Pre-Cooling System for Various Climates," Energies, MDPI, vol. 12(23), pages 1-16, November.
    10. Lin, Jie & Huang, Si-Min & Wang, Ruzhu & Jon Chua, Kian, 2019. "On the in-depth scaling and dimensional analysis of a cross-flow membrane liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 250(C), pages 786-800.
    11. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    12. Suranjan Salins, Sampath & Kumar, Shiva & Shetty, Sawan & Raghavendra, R., 2024. "Theoretical and experimental study of the effect of biomass based organic packing wettability on the LDDS and its life cycle analysis," Renewable Energy, Elsevier, vol. 225(C).
    13. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    14. Zu, Kan & Qin, Menghao & Cui, Shuqing, 2020. "Progress and potential of metal-organic frameworks (MOFs) as novel desiccants for built environment control: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    15. Fekadu, Geleta & Subudhi, Sudhakar, 2018. "Renewable energy for liquid desiccants air conditioning system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 364-379.
    16. Mortazavi, Mehdi & Schmid, Michael & Moghaddam, Saeed, 2017. "Compact and efficient generator for low grade solar and waste heat driven absorption systems," Applied Energy, Elsevier, vol. 198(C), pages 173-179.
    17. Mahmood, Muhammad H. & Sultan, Muhammad & Miyazaki, Takahiko & Koyama, Shigeru & Maisotsenko, Valeriy S., 2016. "Overview of the Maisotsenko cycle – A way towards dew point evaporative cooling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 537-555.
    18. Adamczyk, Janusz & Dylewski, Robert, 2017. "The impact of thermal insulation investments on sustainability in the construction sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 421-429.
    19. Laslett, Dean & Carter, Craig & Creagh, Chris & Jennings, Philip, 2017. "A large-scale renewable electricity supply system by 2030: Solar, wind, energy efficiency, storage and inertia for the South West Interconnected System (SWIS) in Western Australia," Renewable Energy, Elsevier, vol. 113(C), pages 713-731.
    20. Zu, Kan & Qin, Menghao, 2021. "Experimental and modeling investigation of water adsorption of hydrophilic carboxylate-based MOF for indoor moisture control," Energy, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012710. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.