IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics0306261921010564.html
   My bibliography  Save this article

Inventory scaling, life cycle impact assessment and design optimization of distributed energy plants

Author

Listed:
  • Bahlawan, Hilal
  • Morini, Mirko
  • Spina, Pier Ruggero
  • Venturini, Mauro

Abstract

Distributed energy plants can be relevant to mitigate global energy consumption and carbon emissions. The energy and environmental advantages of these systems can be achieved through an optimal design by considering their life cycle energy consumption and environmental impacts. However, the high technical complexity and the scarcity of life cycle inventory data about distributed energy plants makes their design optimization very challenging. This paper proposes a design optimization methodology for distributed energy plants by accounting for life cycle impacts. The plant comprises renewable energy systems, fossil fuel energy systems and energy storage technologies. The life cycle inventory data are scaled at different sizes by using scaling laws which are obtained by gathering data of commercially available systems of various sizes and from different manufacturers. In this manner, impact scaling curves for the quantification of energy and environmental impacts like fossil cumulative energy demand, global warming potential and abiotic resource depletion are obtained. The validity of the proposed methodology is demonstrated by considering the campus of the University of Parma (Italy) as a case study. A distributed energy plant is optimally designed by using a mixed-integer genetic algorithm to minimize life cycle fossil cumulative energy demand. Moreover, an economic assessment of the optimal configurations is also performed. Compared to a conventional plant, the configuration with combined heat and power systems allows a primary energy saving of about 15% and a reduction of total costs of about 12%, while the configuration with reversible heat pumps is the most expensive.

Suggested Citation

  • Bahlawan, Hilal & Morini, Mirko & Spina, Pier Ruggero & Venturini, Mauro, 2021. "Inventory scaling, life cycle impact assessment and design optimization of distributed energy plants," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010564
    DOI: 10.1016/j.apenergy.2021.117701
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921010564
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117701?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akorede, Mudathir Funsho & Hizam, Hashim & Pouresmaeil, Edris, 2010. "Distributed energy resources and benefits to the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 724-734, February.
    2. Longo, Sonia & Beccali, Marco & Cellura, Maurizio & Guarino, Francesco, 2020. "Energy and environmental life-cycle impacts of solar-assisted systems: The application of the tool “ELISA”," Renewable Energy, Elsevier, vol. 145(C), pages 29-40.
    3. Perera, A.T.D. & Nik, Vahid M. & Wickramasinghe, P.U. & Scartezzini, Jean-Louis, 2019. "Redefining energy system flexibility for distributed energy system design," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Ghasemi-Mobtaker, Hassan & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2020. "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," Renewable Energy, Elsevier, vol. 160(C), pages 1316-1334.
    5. Liu, Mingxi & Shi, Yang & Fang, Fang, 2012. "A new operation strategy for CCHP systems with hybrid chillers," Applied Energy, Elsevier, vol. 95(C), pages 164-173.
    6. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    7. Ürge-Vorsatz, Diana & Cabeza, Luisa F. & Serrano, Susana & Barreneche, Camila & Petrichenko, Ksenia, 2015. "Heating and cooling energy trends and drivers in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 85-98.
    8. Bahlawan, Hilal & Morini, Mirko & Pinelli, Michele & Poganietz, Witold-Roger & Spina, Pier Ruggero & Venturini, Mauro, 2019. "Optimization of a hybrid energy plant by integrating the cumulative energy demand," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    9. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).
    10. Schröder, M. & Abdin, Z. & Mérida, W., 2020. "Optimization of distributed energy resources for electric vehicle charging and fuel cell vehicle refueling," Applied Energy, Elsevier, vol. 277(C).
    11. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    12. Mo, Qiu & Liu, Fang, 2020. "Modeling and optimization for distributed microgrid based on Modelica language," Applied Energy, Elsevier, vol. 279(C).
    13. Zatti, Matteo & Gabba, Marco & Freschini, Marco & Rossi, Michele & Gambarotta, Agostino & Morini, Mirko & Martelli, Emanuele, 2019. "k-MILP: A novel clustering approach to select typical and extreme days for multi-energy systems design optimization," Energy, Elsevier, vol. 181(C), pages 1051-1063.
    14. Marloes Caduff & Mark A.J. Huijbregts & Annette Koehler & Hans-Jörg Althaus & Stefanie Hellweg, 2014. "Scaling Relationships in Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 18(3), pages 393-406, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Shiting & Wu, Jun & Gao, Yao & Zhu, Ruijin, 2023. "A high altitude prosumer energy cooperation framework considering composite energy storage sharing and electric‑oxygen‑hydrogen flexible supply," Applied Energy, Elsevier, vol. 349(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    2. Ren, Fukang & Wei, Ziqing & Zhai, Xiaoqiang, 2021. "Multi-objective optimization and evaluation of hybrid CCHP systems for different building types," Energy, Elsevier, vol. 215(PA).
    3. Zhang, Na & Wang, Zefeng & Lior, Noam & Han, Wei, 2018. "Advancement of distributed energy methods by a novel high efficiency solar-assisted combined cooling, heating and power system," Applied Energy, Elsevier, vol. 219(C), pages 179-186.
    4. Su, Bosheng & Han, Wei & Jin, Hongguang, 2017. "Proposal and assessment of a novel integrated CCHP system with biogas steam reforming using solar energy," Applied Energy, Elsevier, vol. 206(C), pages 1-11.
    5. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
    6. Wang, Jiangjiang & Liu, Yi & Ren, Fukang & Lu, Shuaikang, 2020. "Multi-objective optimization and selection of hybrid combined cooling, heating and power systems considering operational flexibility," Energy, Elsevier, vol. 197(C).
    7. Ju, Liwei & Tan, Zhongfu & Li, Huanhuan & Tan, Qingkun & Yu, Xiaobao & Song, Xiaohua, 2016. "Multi-objective operation optimization and evaluation model for CCHP and renewable energy based hybrid energy system driven by distributed energy resources in China," Energy, Elsevier, vol. 111(C), pages 322-340.
    8. Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.
    9. Bahlawan, Hilal & Morini, Mirko & Pinelli, Michele & Poganietz, Witold-Roger & Spina, Pier Ruggero & Venturini, Mauro, 2019. "Optimization of a hybrid energy plant by integrating the cumulative energy demand," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Ge, Yi & Han, Jitian & Ma, Qingzhao & Feng, Jiahui, 2022. "Optimal configuration and operation analysis of solar-assisted natural gas distributed energy system with energy storage," Energy, Elsevier, vol. 246(C).
    11. Roumpedakis, Tryfon C. & Kallis, George & Magiri-Skouloudi, Despina & Grimekis, Dimitrios & Karellas, Sotirios, 2020. "Life cycle analysis of ZEOSOL solar cooling and heating system," Renewable Energy, Elsevier, vol. 154(C), pages 82-98.
    12. Rani, Preeti & Parkash, Ved & Sharma, Naveen Kumar, 2024. "Technological aspects, utilization and impact on power system for distributed generation: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Wang, Jiangjiang & Lu, Yanchao & Yang, Ying & Mao, Tianzhi, 2016. "Thermodynamic performance analysis and optimization of a solar-assisted combined cooling, heating and power system," Energy, Elsevier, vol. 115(P1), pages 49-59.
    14. Mérida García, Aida & Gallagher, John & Rodríguez Díaz, Juan Antonio & McNabola, Aonghus, 2024. "An economic and environmental optimization model for sizing a hybrid renewable energy and battery storage system in off-grid farms," Renewable Energy, Elsevier, vol. 220(C).
    15. Wang, Meng & Yu, Hang & Yang, Yikun & Lin, Xiaoyu & Guo, Haijin & Li, Chaoen & Zhou, Yue & Jing, Rui, 2021. "Unlocking emerging impacts of carbon tax on integrated energy systems through supply and demand co-optimization," Applied Energy, Elsevier, vol. 302(C).
    16. Yi, Ji Hyun & Ko, Woong & Park, Jong-Keun & Park, Hyeongon, 2018. "Impact of carbon emission constraint on design of small scale multi-energy system," Energy, Elsevier, vol. 161(C), pages 792-808.
    17. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    18. Ismail, M.S. & Moghavvemi, M. & Mahlia, T.M.I., 2013. "Energy trends in Palestinian territories of West Bank and Gaza Strip: Possibilities for reducing the reliance on external energy sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 117-129.
    19. Wang, Zhengchao & Perera, A.T.D., 2020. "Integrated platform to design robust energy internet," Applied Energy, Elsevier, vol. 269(C).
    20. Urooj Javed & Saif Ullah & Muhammad Imran & Asif Iqbal Malik & Nokhaiz Tariq Khan, 2021. "Power Distribution Network Expansion and Location Optimization of Additional Facilities: A Case Study," Sustainability, MDPI, vol. 13(14), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s0306261921010564. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.