IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v329y2023ics0306261922015264.html
   My bibliography  Save this article

Balanced broad learning prediction model for carbon emissions of integrated energy systems considering distributed ground source heat pump heat storage systems and carbon capture & storage

Author

Listed:
  • Yin, Linfei
  • Tao, Min

Abstract

With the development of social industry, numerous carbon emissions have led to global warming and caused a huge negative impact on the environment. Carbon neutrality has been proposed to solve this problem; one of the primary issues in achieving carbon neutrality in integrated energy systems is to reduce carbon emissions. This paper utilizes distributed ground source heat pump heat storage systems in integrated energy systems to simultaneously improve the utilization efficiency of wind energy and solar energy for the first time. Moreover, the carbon capture and storage technology in integrated energy systems is considered to store excess CO2 in geological layer. Energy storage in integrated energy systems is applied to adjust the energy network balance. Finally, a balanced broad learning prediction model considering various heterogeneous data is established for load forecasting with 96.12% prediction accuracy. In four cases of the lower or higher wind and solar energy generation curves, carbon emissions are reduced to 82.02% of the original at least.

Suggested Citation

  • Yin, Linfei & Tao, Min, 2023. "Balanced broad learning prediction model for carbon emissions of integrated energy systems considering distributed ground source heat pump heat storage systems and carbon capture & storage," Applied Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015264
    DOI: 10.1016/j.apenergy.2022.120269
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922015264
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120269?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Miao, Zhuang & Chen, Xiaodong & Baležentis, Tomas, 2021. "Improving energy use and mitigating pollutant emissions across “Three Regions and Ten Urban Agglomerations”: A city-level productivity growth decomposition," Applied Energy, Elsevier, vol. 283(C).
    2. Luo, Xi & Liu, Yanfeng & Feng, Pingan & Gao, Yuan & Guo, Zhenxiang, 2021. "Optimization of a solar-based integrated energy system considering interaction between generation, network, and demand side," Applied Energy, Elsevier, vol. 294(C).
    3. Lin, Boqiang & Li, Zheng, 2022. "Towards world's low carbon development: The role of clean energy," Applied Energy, Elsevier, vol. 307(C).
    4. O’Dwyer, Edward & Pan, Indranil & Acha, Salvador & Shah, Nilay, 2019. "Smart energy systems for sustainable smart cities: Current developments, trends and future directions," Applied Energy, Elsevier, vol. 237(C), pages 581-597.
    5. Yang, Xiaohui & Chen, Zaixing & Huang, Xin & Li, Ruixin & Xu, Shaoping & Yang, Chunsheng, 2021. "Robust capacity optimization methods for integrated energy systems considering demand response and thermal comfort," Energy, Elsevier, vol. 221(C).
    6. Guo, Jian-Xin & Huang, Chen, 2020. "Feasible roadmap for CCS retrofit of coal-based power plants to reduce Chinese carbon emissions by 2050," Applied Energy, Elsevier, vol. 259(C).
    7. Wang, Haixin & Yang, Junyou & Chen, Zhe & Li, Gen & Liang, Jun & Ma, Yiming & Dong, Henan & Ji, Huichao & Feng, Jiawei, 2020. "Optimal dispatch based on prediction of distributed electric heating storages in combined electricity and heat networks," Applied Energy, Elsevier, vol. 267(C).
    8. Chiaramonti, David & Maniatis, Kyriakos, 2020. "Security of supply, strategic storage and Covid19: Which lessons learnt for renewable and recycled carbon fuels, and their future role in decarbonizing transport?," Applied Energy, Elsevier, vol. 271(C).
    9. Qin, Xin & Sun, Hongbin & Shen, Xinwei & Guo, Ye & Guo, Qinglai & Xia, Tian, 2019. "A generalized quasi-dynamic model for electric-heat coupling integrated energy system with distributed energy resources," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    10. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    11. Xu, Guangyue & Dong, Haoyun & Xu, Zhenci & Bhattarai, Nishan, 2022. "China can reach carbon neutrality before 2050 by improving economic development quality," Energy, Elsevier, vol. 243(C).
    12. Tan, Qinliang & Ding, Yihong & Zheng, Jin & Dai, Mei & Zhang, Yimei, 2021. "The effects of carbon emissions trading and renewable portfolio standards on the integrated wind–photovoltaic–thermal power-dispatching system: Real case studies in China," Energy, Elsevier, vol. 222(C).
    13. Su, Yuan & Wang, Linwei & Feng, Wei & Zhou, Nan & Wang, Luyuan, 2021. "Analysis of green building performance in cold coastal climates: An in-depth evaluation of green buildings in Dalian, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    14. Zhang, Wei & Li, Guoxiang & Guo, Fanyong, 2022. "Does carbon emissions trading promote green technology innovation in China?," Applied Energy, Elsevier, vol. 315(C).
    15. Chen, Siyuan & Li, Zheng & Li, Weiqi, 2021. "Integrating high share of renewable energy into power system using customer-sited energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    16. Martínez-Gordón, R. & Morales-España, G. & Sijm, J. & Faaij, A.P.C., 2021. "A review of the role of spatial resolution in energy systems modelling: Lessons learned and applicability to the North Sea region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Li, Ye & Chen, Yiyan, 2021. "Development of an SBM-ML model for the measurement of green total factor productivity: The case of pearl river delta urban agglomeration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    18. Panos, Evangelos & Kober, Tom & Wokaun, Alexander, 2019. "Long term evaluation of electric storage technologies vs alternative flexibility options for the Swiss energy system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
    20. Tian, Jinfang & Yu, Longguang & Xue, Rui & Zhuang, Shan & Shan, Yuli, 2022. "Global low-carbon energy transition in the post-COVID-19 era," Applied Energy, Elsevier, vol. 307(C).
    21. Li, Haoran & Hou, Juan & Tian, Zhiyong & Hong, Tianzhen & Nord, Natasa & Rohde, Daniel, 2022. "Optimize heat prosumers' economic performance under current heating price models by using water tank thermal energy storage," Energy, Elsevier, vol. 239(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan, Wei & Fan, Ying & Yao, Xing & Yi, Bowen & Jiang, Dalin & Wu, Lin, 2024. "Distributed transaction optimization model of multi-integrated energy systems based on nash negotiation," Renewable Energy, Elsevier, vol. 225(C).
    2. Chunxia Gao & Zhaoyan Zhang & Peiguang Wang, 2023. "Day-Ahead Scheduling Strategy Optimization of Electric–Thermal Integrated Energy System to Improve the Proportion of New Energy," Energies, MDPI, vol. 16(9), pages 1-30, April.
    3. Dong, Fuxiang & Wang, Jiangjiang & Xu, Hangwei & Zhang, Xutao, 2024. "A robust real-time energy scheduling strategy of integrated energy system based on multi-step interval prediction of uncertainties," Energy, Elsevier, vol. 300(C).
    4. Zhaoyu Qi & Shitao Peng & Peisen Wu & Ming-Lang Tseng, 2024. "Renewable Energy Distributed Energy System Optimal Configuration and Performance Analysis: Improved Zebra Optimization Algorithm," Sustainability, MDPI, vol. 16(12), pages 1-24, June.
    5. Fu, Yue & Wang, Liyuan & Liu, Ming & Wang, Jinshi & Yan, Junjie, 2023. "Performance analysis of coal-fired power plants integrated with carbon capture system under load-cycling operation conditions," Energy, Elsevier, vol. 276(C).
    6. Changcheng Li & Haoran Li & Hao Yue & Jinfeng Lv & Jian Zhang, 2024. "Flexibility Value of Multimodal Hydrogen Energy Utilization in Electric–Hydrogen–Thermal Systems," Sustainability, MDPI, vol. 16(12), pages 1-25, June.
    7. Yun, Yunyun & Zhang, Dahai & Yang, Shengchun & Li, Yaping & Yan, Jiahao, 2023. "Low-carbon optimal dispatch of integrated energy system considering the operation of oxy-fuel combustion coupled with power-to-gas and hydrogen-doped gas equipment," Energy, Elsevier, vol. 283(C).
    8. Li, Zhanhe & Li, Xiaoqian & Lu, Chao & Ma, Kechun & Bao, Weihan, 2024. "Carbon emission responsibility accounting in renewable energy-integrated DC traction power systems," Applied Energy, Elsevier, vol. 355(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chunxia Gao & Zhaoyan Zhang & Peiguang Wang, 2023. "Day-Ahead Scheduling Strategy Optimization of Electric–Thermal Integrated Energy System to Improve the Proportion of New Energy," Energies, MDPI, vol. 16(9), pages 1-30, April.
    2. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    3. Reni Pantcheva, 2024. "Economic and Social Drivers of Renewable Energy Consumption in the European Union: An Econometric Analysis," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 7, pages 62-84.
    4. Du, Dajun & Zhu, Minggao & Wu, Dakui & Li, Xue & Fei, Minrui & Hu, Yukun & Li, Kang, 2024. "Distributed security state estimation-based carbon emissions and economic cost analysis for cyber–physical power systems under hybrid attacks," Applied Energy, Elsevier, vol. 353(PA).
    5. Fang, Guochang & Meng, Aoxiang & Wang, Qingling & Zhou, Huixin & Tian, Lixin, 2024. "Analysis of the evolution path of new energy system under polymorphic uncertainty—A case study of China," Energy, Elsevier, vol. 300(C).
    6. He, Ling & Li, Xiaofan & Cui, Qi & Guan, Bing & Li, Meng & Chen, Hao, 2024. "Decarbonization pathways to subregional carbon neutrality in China based on the top-down multi-regional CGE model: A study of Guangxi," Energy, Elsevier, vol. 294(C).
    7. Lasemi, Mohammad Ali & Arabkoohsar, Ahmad & Hajizadeh, Amin & Mohammadi-ivatloo, Behnam, 2022. "A comprehensive review on optimization challenges of smart energy hubs under uncertainty factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Sun, Jian & Liu, Gang & Sun, Boyang & Xiao, Gang, 2021. "Light-stacking strengthened fusion based building energy consumption prediction framework via variable weight feature selection," Applied Energy, Elsevier, vol. 303(C).
    9. Elsisi, Mahmoud & Amer, Mohammed & Dababat, Alya’ & Su, Chun-Lien, 2023. "A comprehensive review of machine learning and IoT solutions for demand side energy management, conservation, and resilient operation," Energy, Elsevier, vol. 281(C).
    10. Sheng Xu & Wenran Pan & Demei Wen, 2023. "Do Carbon Emission Trading Schemes Promote the Green Transition of Enterprises? Evidence from China," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    11. Minh-Tai Le & Nhat-Luong Nhieu, 2022. "A Novel Multi-Criteria Assessment Approach for Post-COVID-19 Production Strategies in Vietnam Manufacturing Industry: OPA–Fuzzy EDAS Model," Sustainability, MDPI, vol. 14(8), pages 1-25, April.
    12. Jingyu Ji & Hang Lin, 2022. "Evaluating Regional Carbon Inequality and Its Dependence with Carbon Efficiency: Implications for Carbon Neutrality," Energies, MDPI, vol. 15(19), pages 1-35, September.
    13. Li, Haoran & Hou, Juan & Hong, Tianzhen & Nord, Natasa, 2022. "Distinguish between the economic optimal and lowest distribution temperatures for heat-prosumer-based district heating systems with short-term thermal energy storage," Energy, Elsevier, vol. 248(C).
    14. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    15. Gu, Tianqi & Xu, Weiping & Liang, Hua & He, Qing & Zheng, Nan, 2024. "School bus transport service strategies’ policy-making mechanism – An evolutionary game approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    16. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Gheorghe Cristian Popescu & Monica Popescu, 2022. "COVID-19 pandemic and agriculture in Romania: effects on agricultural systems, compliance with restrictions and relations with authorities," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 14(2), pages 557-567, April.
    18. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    20. Ahmed, Gaffer & Kishore, Nanda, 2024. "Synergistic effects on properties of biofuel and biochar produced through co-feed pyrolysis of Erythrina indica and Azadirachta indica biomass," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922015264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.