IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v329y2023ics0306261922014878.html
   My bibliography  Save this article

A tri-level framework for distribution-level market clearing considering strategic participation of electrical vehicles and interactions with wholesale market

Author

Listed:
  • Wang, Jun
  • Xu, Jian
  • Ke, Deping
  • Liao, Siyang
  • Sun, Yuanzhang
  • Wang, Jingjing
  • Yao, Liangzhong
  • Mao, Beiling
  • Wei, Congying

Abstract

With the increasing penetration of distributed renewable energy sources in distribution networks, a large number of independent market entities such as load serving entities will participate in the distribution-level market, which provides a platform for transparent energy transactions among them. This paper proposes a novel tri-level optimization model for distribution system operator market clearing, fully considering the strategic participation of electrical vehicles and the interactions with the transmission system operator in the market environment. The upper-level model addresses the bidding strategy problem of charging stations and the randomness of renewable energy sources, the middle-level model performs the distribution-level market clearing, and the lower-level model focuses on the joint optimization of power and reserve for transmission network. Furthermore, the Stackelberg game model between distribution system operator and each charging station is converted into a mathematical program with equilibrium constraints formulation, and a decentralized approach based on analytical target cascading algorithm is developed to realize the decoupling of distribution and transmission network. The simulation results show that the proposed distribution-level market clearing method can alleviate the congestion in transmission network and enhance the economic benefits of load serving entities in distribution network.

Suggested Citation

  • Wang, Jun & Xu, Jian & Ke, Deping & Liao, Siyang & Sun, Yuanzhang & Wang, Jingjing & Yao, Liangzhong & Mao, Beiling & Wei, Congying, 2023. "A tri-level framework for distribution-level market clearing considering strategic participation of electrical vehicles and interactions with wholesale market," Applied Energy, Elsevier, vol. 329(C).
  • Handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922014878
    DOI: 10.1016/j.apenergy.2022.120230
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922014878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.120230?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Motamedi Sedeh, Omid & Ostadi, Bakhtiar, 2020. "Optimization of bidding strategy in the day-ahead market by consideration of seasonality trend of the market spot price," Energy Policy, Elsevier, vol. 145(C).
    2. Zhu, Ziqing & Wing Chan, Ka & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2021. "Real-Time interaction of active distribution network and virtual microgrids: Market paradigm and data-driven stakeholder behavior analysis," Applied Energy, Elsevier, vol. 297(C).
    3. Yuan, Zhao & Hesamzadeh, Mohammad Reza, 2017. "Hierarchical coordination of TSO-DSO economic dispatch considering large-scale integration of distributed energy resources," Applied Energy, Elsevier, vol. 195(C), pages 600-615.
    4. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).
    5. Jiang, Yibo & Xu, Jian & Sun, Yuanzhang & Wei, Congying & Wang, Jing & Ke, Deping & Li, Xiong & Yang, Jun & Peng, Xiaotao & Tang, Bowen, 2017. "Day-ahead stochastic economic dispatch of wind integrated power system considering demand response of residential hybrid energy system," Applied Energy, Elsevier, vol. 190(C), pages 1126-1137.
    6. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    7. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Zhang, Zhen, 2018. "Coordination optimization of multiple thermostatically controlled load groups in distribution network with renewable energy," Applied Energy, Elsevier, vol. 231(C), pages 456-467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jun & Xu, Jian & Wang, Jingjing & Ke, Deping & Yao, Liangzhong & Zhou, Yue & Liao, Siyang, 2024. "Two-stage distributionally robust offering and pricing strategy for a price-maker virtual power plant," Applied Energy, Elsevier, vol. 363(C).
    2. Faria, Wandry Rodrigues & Muñoz-Delgado, Gregorio & Contreras, Javier & Pereira Junior, Benvindo Rodrigues, 2024. "A trilevel programming model for the coordination of wholesale and local distribution markets considering GENCOs and proactive customers," Applied Energy, Elsevier, vol. 357(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dong, Zihang & Zhang, Xi & Li, Yijun & Strbac, Goran, 2023. "Values of coordinated residential space heating in demand response provision," Applied Energy, Elsevier, vol. 330(PB).
    2. Zhu, Ziqing & Hu, Ze & Chan, Ka Wing & Bu, Siqi & Zhou, Bin & Xia, Shiwei, 2023. "Reinforcement learning in deregulated energy market: A comprehensive review," Applied Energy, Elsevier, vol. 329(C).
    3. Pearson, Simon & Wellnitz, Sonja & Crespo del Granado, Pedro & Hashemipour, Naser, 2022. "The value of TSO-DSO coordination in re-dispatch with flexible decentralized energy sources: Insights for Germany in 2030," Applied Energy, Elsevier, vol. 326(C).
    4. Wei, Congying & Wu, Qiuwei & Xu, Jian & Sun, Yuanzhang & Jin, Xiaolong & Liao, Siyang & Yuan, Zhiyong & Yu, Li, 2020. "Distributed scheduling of smart buildings to smooth power fluctuations considering load rebound," Applied Energy, Elsevier, vol. 276(C).
    5. Ding, Yi & Cui, Wenqi & Zhang, Shujun & Hui, Hongxun & Qiu, Yiwei & Song, Yonghua, 2019. "Multi-state operating reserve model of aggregate thermostatically-controlled-loads for power system short-term reliability evaluation," Applied Energy, Elsevier, vol. 241(C), pages 46-58.
    6. Anvari-Moghaddam, Amjad & Rahimi-Kian, Ashkan & Mirian, Maryam S. & Guerrero, Josep M., 2017. "A multi-agent based energy management solution for integrated buildings and microgrid system," Applied Energy, Elsevier, vol. 203(C), pages 41-56.
    7. Zhao, Yincheng & Zhang, Guozhou & Hu, Weihao & Huang, Qi & Chen, Zhe & Blaabjerg, Frede, 2023. "Meta-learning based voltage control strategy for emergency faults of active distribution networks," Applied Energy, Elsevier, vol. 349(C).
    8. Ju, Liwei & Yin, Zhe & Lu, Xiaolong & Yang, Shenbo & Li, Peng & Rao, Rao & Tan, Zhongfu, 2022. "A Tri-dimensional Equilibrium-based stochastic optimal dispatching model for a novel virtual power plant incorporating carbon Capture, Power-to-Gas and electric vehicle aggregator," Applied Energy, Elsevier, vol. 324(C).
    9. Hou, Langbo & Tong, Xi & Chen, Heng & Fan, Lanxin & Liu, Tao & Liu, Wenyi & Liu, Tong, 2024. "Optimized scheduling of smart community energy systems considering demand response and shared energy storage," Energy, Elsevier, vol. 295(C).
    10. Wei, Congying & Xu, Jian & Liao, Siyang & Sun, Yuanzhang & Jiang, Yibo & Ke, Deping & Zhang, Zhen & Wang, Jing, 2018. "A bi-level scheduling model for virtual power plants with aggregated thermostatically controlled loads and renewable energy," Applied Energy, Elsevier, vol. 224(C), pages 659-670.
    11. Zhu, Xu & Yang, Jun & Pan, Xueli & Li, Gaojunjie & Rao, Yingqing, 2020. "Regional integrated energy system energy management in an industrial park considering energy stepped utilization," Energy, Elsevier, vol. 201(C).
    12. Kocaman, Ayse Selin & Ozyoruk, Emin & Taneja, Shantanu & Modi, Vijay, 2020. "A stochastic framework to evaluate the impact of agricultural load flexibility on the sizing of renewable energy systems," Renewable Energy, Elsevier, vol. 152(C), pages 1067-1078.
    13. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Stennikov, Valery & Barakhtenko, Evgeny & Mayorov, Gleb & Sokolov, Dmitry & Zhou, Bin, 2022. "Coordinated management of centralized and distributed generation in an integrated energy system using a multi-agent approach," Applied Energy, Elsevier, vol. 309(C).
    15. Zhao, Liyuan & Yang, Ting & Li, Wei & Zomaya, Albert Y., 2022. "Deep reinforcement learning-based joint load scheduling for household multi-energy system," Applied Energy, Elsevier, vol. 324(C).
    16. Zheng, Lingwei & Wu, Hao & Guo, Siqi & Sun, Xinyu, 2023. "Real-time dispatch of an integrated energy system based on multi-stage reinforcement learning with an improved action-choosing strategy," Energy, Elsevier, vol. 277(C).
    17. Fernando E. Postigo Marcos & Carlos Mateo Domingo & Tomás Gómez San Román & Bryan Palmintier & Bri-Mathias Hodge & Venkat Krishnan & Fernando De Cuadra García & Barry Mather, 2017. "A Review of Power Distribution Test Feeders in the United States and the Need for Synthetic Representative Networks," Energies, MDPI, vol. 10(11), pages 1-14, November.
    18. Luo, Zhe & Hong, SeungHo & Ding, YueMin, 2019. "A data mining-driven incentive-based demand response scheme for a virtual power plant," Applied Energy, Elsevier, vol. 239(C), pages 549-559.
    19. Mansourshoar, Paria & Yazdankhah, Ahmad Sadeghi & Vatanpour, Mohsen & Mohammadi-Ivatloo, Behnam, 2022. "Impact of implementing a price-based demand response program on the system reliability in security-constrained unit commitment problem coupled with wind farms in the presence of contingencies," Energy, Elsevier, vol. 255(C).
    20. Zhang, Xizheng & Wang, Zeyu & Lu, Zhangyu, 2022. "Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm," Applied Energy, Elsevier, vol. 306(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922014878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.