IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v324y2022ics030626192201025x.html
   My bibliography  Save this article

Research on coordinated control of renewable-energy-based Heat-Power station system

Author

Listed:
  • Lei, Xuanang
  • Lin, Yujun
  • Yang, Qiufan
  • Zhou, Jianyu
  • Chen, Xia
  • Wen, Jinyu

Abstract

The traditional combined heat and power (CHP) units have drawbacks such as a lack of flexibility in control and environmental pollution. Renewable-energy-based heat-power station (REHPS) system utilizes renewable energy to produce electricity and heat with the advantages of cleanness, high efficiency, and flexibility. The previous studies on CHP mainly focus on optimal scheduling, and its operation control is seldom considered. This paper proposes a coordinated control strategy of REHPS to ensure stable and reliable operation. Firstly, the dynamical model of REHPS is established and the operational principle and dynamic characteristics are analyzed. Secondly, a double-layer coordinated control strategy is proposed for smoothing power fluctuation in the lower layer and meeting the demand of thermal load in the upper layer. The dynamic characteristics of the controller are analyzed for the parameter design to match the dynamic response time of the energy storages. Finally, simulations and experimental studies are conducted to demonstrate the effectiveness of the proposed coordinated control in the REHPS system under different scenarios. The results show that the system operates stably and the indoor temperature is maintained at around 25 °C. Compared with the previous study, the maximum voltage overshoot is decreased by 11.2% under wind speed fluctuations and the temperature difference is controlled within about 0.5 °C under thermal load variation under the proposed control. The research on REHPS control provides a new solution to meet the multi-energy demands of users.

Suggested Citation

  • Lei, Xuanang & Lin, Yujun & Yang, Qiufan & Zhou, Jianyu & Chen, Xia & Wen, Jinyu, 2022. "Research on coordinated control of renewable-energy-based Heat-Power station system," Applied Energy, Elsevier, vol. 324(C).
  • Handle: RePEc:eee:appene:v:324:y:2022:i:c:s030626192201025x
    DOI: 10.1016/j.apenergy.2022.119736
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192201025X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119736?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhu, Mengshu & Li, Jinghua, 2022. "Integrated dispatch for combined heat and power with thermal energy storage considering heat transfer delay," Energy, Elsevier, vol. 244(PB).
    2. Martinopoulos, Georgios & Papakostas, Konstantinos T. & Papadopoulos, Agis M., 2018. "A comparative review of heating systems in EU countries, based on efficiency and fuel cost," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 687-699.
    3. Seddegh, Saeid & Wang, Xiaolin & Henderson, Alan D. & Xing, Ziwen, 2015. "Solar domestic hot water systems using latent heat energy storage medium: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 517-533.
    4. Zhen, Wang & Xin-gang, Zhao & Ying, Zhou, 2021. "Biased technological progress and total factor productivity growth: From the perspective of China's renewable energy industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    5. Zhao, Junjie & Chang, Huawei & Luo, Xiaobing & Tu, Zhengkai & Chan, Siew Hwa, 2022. "Dynamic analysis of a CCHP system based on fuel cells integrated with methanol-reforming and dehumidification for data centers," Applied Energy, Elsevier, vol. 309(C).
    6. Klinge Jacobsen, Henrik & Schröder, Sascha Thorsten, 2012. "Curtailment of renewable generation: Economic optimality and incentives," Energy Policy, Elsevier, vol. 49(C), pages 663-675.
    7. Wang, Jiawei & You, Shi & Zong, Yi & Træholt, Chresten & Dong, Zhao Yang & Zhou, You, 2019. "Flexibility of combined heat and power plants: A review of technologies and operation strategies," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. De Lorenzi, Andrea & Gambarotta, Agostino & Marzi, Emanuela & Morini, Mirko & Saletti, Costanza, 2022. "Predictive control of a combined heat and power plant for grid flexibility under demand uncertainty," Applied Energy, Elsevier, vol. 314(C).
    9. Dahash, Abdulrahman & Ochs, Fabian & Janetti, Michele Bianchi & Streicher, Wolfgang, 2019. "Advances in seasonal thermal energy storage for solar district heating applications: A critical review on large-scale hot-water tank and pit thermal energy storage systems," Applied Energy, Elsevier, vol. 239(C), pages 296-315.
    10. Jin, Yuhui & Wu, Xiao & Shen, Jiong, 2022. "Power-heat coordinated control of multiple energy system for off-grid energy supply using multi-timescale distributed predictive control," Energy, Elsevier, vol. 254(PB).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    2. Dong, Zhe & Cheng, Zhonghua & Zhu, Yunlong & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Coordinated control of mHTGR-based nuclear steam supply systems considering cold helium temperature," Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Long & Yin, Xunyuan & Pan, Lei & Liu, Jinfeng, 2023. "Distributed economic predictive control of integrated energy systems for enhanced synergy and grid response: A decomposition and cooperation strategy," Applied Energy, Elsevier, vol. 349(C).
    2. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    3. Eid Gul & Giorgio Baldinelli & Pietro Bartocci, 2022. "Energy Transition: Renewable Energy-Based Combined Heat and Power Optimization Model for Distributed Communities," Energies, MDPI, vol. 15(18), pages 1-18, September.
    4. Shifei Zhao & Chunlan Wang & Fan Duan & Ze Tian, 2024. "Thermodynamic Comparison of the Steam Ejectors Integrated at Different Locations in Cogeneration Systems," Energies, MDPI, vol. 17(11), pages 1-18, May.
    5. Mikhail Tokarev, 2019. "A Double-Bed Adsorptive Heat Transformer for Upgrading Ambient Heat: Design and First Tests," Energies, MDPI, vol. 12(21), pages 1-14, October.
    6. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    7. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    8. Davide Coraci & Silvio Brandi & Marco Savino Piscitelli & Alfonso Capozzoli, 2021. "Online Implementation of a Soft Actor-Critic Agent to Enhance Indoor Temperature Control and Energy Efficiency in Buildings," Energies, MDPI, vol. 14(4), pages 1-26, February.
    9. Psarros, Georgios N. & Papathanassiou, Stavros A., 2023. "Generation scheduling in island systems with variable renewable energy sources: A literature review," Renewable Energy, Elsevier, vol. 205(C), pages 1105-1124.
    10. Marcin Klimczak & Grzegorz Bartnicki & Piotr Ziembicki, 2022. "Energy Consumption by DHW System with a Circulation Loop as an Energy Efficiency Component, Based on an Example of a Residential Building," Energies, MDPI, vol. 15(11), pages 1-18, May.
    11. Ji, Huichao & Wang, Haixin & Yang, Junyou & Feng, Jiawei & Yang, Yongyue & Okoye, Martin Onyeka, 2021. "Optimal schedule of solid electric thermal storage considering consumer behavior characteristics in combined electricity and heat networks," Energy, Elsevier, vol. 234(C).
    12. Liu, Hong & Zhao, Yue & Gu, Chenghong & Ge, Shaoyun & Yang, Zan, 2021. "Adjustable capability of the distributed energy system: Definition, framework, and evaluation model," Energy, Elsevier, vol. 222(C).
    13. Li, Yantong & Huang, Gongsheng & Xu, Tao & Liu, Xiaoping & Wu, Huijun, 2018. "Optimal design of PCM thermal storage tank and its application for winter available open-air swimming pool," Applied Energy, Elsevier, vol. 209(C), pages 224-235.
    14. Su, Yufei & Kern, Jordan D. & Characklis, Gregory W., 2017. "The impact of wind power growth and hydrological uncertainty on financial losses from oversupply events in hydropower-dominated systems," Applied Energy, Elsevier, vol. 194(C), pages 172-183.
    15. Klinge Jacobsen, Henrik & Pade, Lise Lotte & Schröder, Sascha Thorsten & Kitzing, Lena, 2014. "Cooperation mechanisms to achieve EU renewable targets," Renewable Energy, Elsevier, vol. 63(C), pages 345-352.
    16. Zhao, Guanjia & Cui, Zhipeng & Xu, Jing & Liu, Wenhao & Ma, Suxia, 2022. "Hybrid modeling-based digital twin for performance optimization with flexible operation in the direct air-cooling power unit," Energy, Elsevier, vol. 254(PC).
    17. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    18. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    19. Deng, Xiangtian & Zhang, Yi & Jiang, Yi & Zhang, Yi & Qi, He, 2024. "A novel operation method for renewable building by combining distributed DC energy system and deep reinforcement learning," Applied Energy, Elsevier, vol. 353(PB).
    20. Saqib Javed & Ivar Rognhaug Ørnes & Tor Helge Dokka & Maria Myrup & Sverre Bjørn Holøs, 2021. "Evaluating the Use of Displacement Ventilation for Providing Space Heating in Unoccupied Periods Using Laboratory Experiments, Field Tests and Numerical Simulations," Energies, MDPI, vol. 14(4), pages 1-33, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:324:y:2022:i:c:s030626192201025x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.