IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v362y2024ics0306261924003866.html
   My bibliography  Save this article

A cluster-based appliance-level-of-use demand response program design

Author

Listed:
  • Wu, Jiaman
  • Lu, Chenbei
  • Wu, Chenye
  • Shi, Jian
  • Gonzalez, Marta C.
  • Wang, Dan
  • Han, Zhu

Abstract

The ever-intensifying threat of climate change renders the electric power system undergoing a profound transition toward net-zero emissions. Energy efficiency measures, such as demand response, facilitate the transformation to jointly relieve consumers’ financial burden and improve the operability of the electric power grid, in a carbon-free way. In this paper, we design a cluster-based appliance-level-of-use demand response program, based on the massive volume of appliance consumption data, to expand the role demand response can play in the power grid’s low-carbon transition. We systematically model the appliance-level utility function to distinguish consumers’ distinct consumption patterns. We then develop a bi-level optimization model to capture the interactions between individual consumers and a distribution system operator (DSO) and enable appliance-level-of-use demand response functions. To further improve the efficiency and scalability of the proposed mechanism, we propose a cluster-based approach to capture the heterogeneity of users based on their energy consumption behaviors. Simulation results show that by capturing the detailed appliance-level response patterns, the proposed approach can systematically improve overall social welfare compared with conventional demand response mechanisms.

Suggested Citation

  • Wu, Jiaman & Lu, Chenbei & Wu, Chenye & Shi, Jian & Gonzalez, Marta C. & Wang, Dan & Han, Zhu, 2024. "A cluster-based appliance-level-of-use demand response program design," Applied Energy, Elsevier, vol. 362(C).
  • Handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003866
    DOI: 10.1016/j.apenergy.2024.123003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924003866
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    2. Wen, Lulu & Zhou, Kaile & Li, Jun & Wang, Shanyong, 2020. "Modified deep learning and reinforcement learning for an incentive-based demand response model," Energy, Elsevier, vol. 205(C).
    3. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    4. Hausman, Jerry & McFadden, Daniel, 1984. "Specification Tests for the Multinomial Logit Model," Econometrica, Econometric Society, vol. 52(5), pages 1219-1240, September.
    5. Ruan, Jiaqi & Liu, Guolong & Qiu, Jing & Liang, Gaoqi & Zhao, Junhua & He, Binghao & Wen, Fushuan, 2022. "Time-varying price elasticity of demand estimation for demand-side smart dynamic pricing," Applied Energy, Elsevier, vol. 322(C).
    6. Mohseni, Soheil & Khalid, Roomana & Brent, Alan C., 2023. "Stochastic, resilience-oriented optimal sizing of off-grid microgrids considering EV-charging demand response: An efficiency comparison of state-of-the-art metaheuristics," Applied Energy, Elsevier, vol. 341(C).
    7. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Tian, Ning & Zhao, Wei, 2023. "Incentive-based demand response strategies for natural gas considering carbon emissions and load volatility," Applied Energy, Elsevier, vol. 348(C).
    8. Meng, Yan & Fan, Shuai & Shen, Yu & Xiao, Jucheng & He, Guangyu & Li, Zuyi, 2023. "Transmission and distribution network-constrained large-scale demand response based on locational customer directrix load for accommodating renewable energy," Applied Energy, Elsevier, vol. 350(C).
    9. Henggeler Antunes, Carlos & Alves, Maria João & Soares, Inês, 2022. "A comprehensive and modular set of appliance operation MILP models for demand response optimization," Applied Energy, Elsevier, vol. 320(C).
    10. Nikzad, Mehdi & Samimi, Abouzar, 2021. "Integration of designing price-based demand response models into a stochastic bi-level scheduling of multiple energy carrier microgrids considering energy storage systems," Applied Energy, Elsevier, vol. 282(PA).
    11. Bates, John J, 1987. "Measuring Travel Time Values with a Discrete Choice Model: A Note," Economic Journal, Royal Economic Society, vol. 97(386), pages 493-498, June.
    12. Amit Shewale & Anil Mokhade & Nitesh Funde & Neeraj Dhanraj Bokde, 2020. "An Overview of Demand Response in Smart Grid and Optimization Techniques for Efficient Residential Appliance Scheduling Problem," Energies, MDPI, vol. 13(16), pages 1-31, August.
    13. Chen, Zhiqiang & Li, Jianbin & Cheng, Long & Liu, Xiufeng, 2023. "Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation," Applied Energy, Elsevier, vol. 334(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pereira, Pedro & Ribeiro, Tiago, 2011. "The impact on broadband access to the Internet of the dual ownership of telephone and cable networks," International Journal of Industrial Organization, Elsevier, vol. 29(2), pages 283-293, March.
    2. Erik Stam & Roy Thurik & Peter van der Zwan, 2010. "Entrepreneurial exit in real and imagined markets," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 19(4), pages 1109-1139, August.
    3. Illichmann, R. & Abdulai, A., 2014. "Analysis of Consumer Preferences and Wilingness-To-Pay for Organic Food Products in Germany," Proceedings “Schriften der Gesellschaft für Wirtschafts- und Sozialwissenschaften des Landbaues e.V.”, German Association of Agricultural Economists (GEWISOLA), vol. 49, March.
    4. Michelsen, Carl Christian & Madlener, Reinhard, 2016. "Switching from fossil fuel to renewables in residential heating systems: An empirical study of homeowners' decisions in Germany," Energy Policy, Elsevier, vol. 89(C), pages 95-105.
    5. Joachim Marti, 2012. "Assessing preferences for improved smoking cessation medications: a discrete choice experiment," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 13(5), pages 533-548, October.
    6. Kanchanaroek, Yingluk & Termansen, Mette & Quinn, Claire, 2013. "Property rights regimes in complex fishery management systems: A choice experiment application," Ecological Economics, Elsevier, vol. 93(C), pages 363-373.
    7. Jia, Hao & Skaperdas, Stergios & Vaidya, Samarth, 2013. "Contest functions: Theoretical foundations and issues in estimation," International Journal of Industrial Organization, Elsevier, vol. 31(3), pages 211-222.
    8. Reinhard A. Weisser, 2020. "How Personality Shapes Study Location Choices," Research in Higher Education, Springer;Association for Institutional Research, vol. 61(1), pages 88-116, February.
    9. Liesivaara, Petri & Myyrä, Sami, 2014. "Government policies in changing climate and the demand for crop insurance," 88th Annual Conference, April 9-11, 2014, AgroParisTech, Paris, France 170520, Agricultural Economics Society.
    10. Ron Dalumpines & Darren M. Scott, 2017. "Making mode detection transferable: extracting activity and travel episodes from GPS data using the multinomial logit model and Python," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(5), pages 523-539, July.
    11. Yosr Abid Fourati & Cathal O'Donoghue, 2009. "Eliciting Individual Preferences for Pension Reform," Working Papers 0150, National University of Ireland Galway, Department of Economics, revised 2009.
    12. Damette, Olivier & Delacote, Philippe & Lo, Gaye Del, 2018. "Households energy consumption and transition toward cleaner energy sources," Energy Policy, Elsevier, vol. 113(C), pages 751-764.
    13. Andrea Gauselmann & Philipp Marek, 2012. "Regional determinants of MNE’s location choice in post-transition economies," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 39(4), pages 487-511, November.
    14. Susan Athey & Guido W. Imbens, 2007. "Discrete Choice Models With Multiple Unobserved Choice Characteristics," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(4), pages 1159-1192, November.
    15. Tobias Trütsch, 2016. "The impact of mobile payment on payment choice," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 30(3), pages 299-336, August.
    16. De Valck, Jeremy & Vlaeminck, Pieter & Liekens, Inge & Aertsens, Joris & Chen, Wendy & Vranken, Liesbet, 2012. "The sources of preference heterogeneity for nature restoration scenarios," Working Papers 146522, Katholieke Universiteit Leuven, Centre for Agricultural and Food Economics.
    17. Anastassiadis, Friederike & Liebe, Ulf & Musshoff, Oliver, 2012. "Finanzielle Flexibilität In Landwirtschaftlichen Investitionsentscheidungen: Ein Discrete Choice Experiment," 52nd Annual Conference, Stuttgart, Germany, September 26-28, 2012 137142, German Association of Agricultural Economists (GEWISOLA).
    18. Jan (J.) Rouwendal, 2017. "Specification Tests for The Multinomial Logit Model Revisited: The Role of Alternative-Specific Constants," Tinbergen Institute Discussion Papers 17-068/VIII, Tinbergen Institute, revised 29 Jan 2018.
    19. Vidale, E & Pettenella, D & Gatto, P & Secco, L, 23. "What can we sell behind timber production?," Scandinavian Forest Economics: Proceedings of the Biennial Meeting of the Scandinavian Society of Forest Economics, Scandinavian Society of Forest Economics, issue 44, May.
    20. Cécile Détang‐Dessendre & Florence Goffette‐Nagot & Virginie Piguet, 2008. "Life Cycle And Migration To Urban And Rural Areas: Estimation Of A Mixed Logit Model On French Data," Journal of Regional Science, Wiley Blackwell, vol. 48(4), pages 789-824, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:362:y:2024:i:c:s0306261924003866. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.