IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v319y2022ics0306261922006250.html
   My bibliography  Save this article

Optimal heat and power management of a reversible solid oxide cell based microgrid for effective technoeconomic hydrogen consumption and storage

Author

Listed:
  • Califano, M.
  • Sorrentino, M.
  • Rosen, M.A.
  • Pianese, C.

Abstract

This paper proposes and examines a highly integrated microgrid based on a reversible solid oxide cell, aimed at satisfying electrical and thermal loads of a 20-unit residential complex as well as the demands of electric and fuel cell vehicles. Such a system has been conceived as a profitable ready-made solution to be embedded into existing plants already equipped with renewable energy sources (i.e., wind farm and photovoltaic panels) by means of a reversible solid oxide cell and energy storage technologies. A dynamic programming-based routine has been suitably implemented as an algorithm for both the electrical and thermal sides of the plant for managing the power split indices. In addition, an external routine has been deployed to consider economic aspects; in particular, attention has been paid to the levelized cost of energy, allowing for comparisons with current reliable energy generation technologies. The analyses involve parametric assessments of multiple reversible solid oxide cell sizes and economic discount rates while fixing the lifetime of the plant at 30 years. In accordance with the results of the optimal microgrid design, by exploiting 100% of the rSOC working time (shared by mode as 40% fuel cell and 60% electrolyzer) a simple payback period of 5.97 years is achieved along with a levelized cost of energy index value in the 0.1 €/kWh-0.2 €/kWh range.

Suggested Citation

  • Califano, M. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2022. "Optimal heat and power management of a reversible solid oxide cell based microgrid for effective technoeconomic hydrogen consumption and storage," Applied Energy, Elsevier, vol. 319(C).
  • Handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922006250
    DOI: 10.1016/j.apenergy.2022.119268
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922006250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119268?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pope, K. & Dincer, I. & Naterer, G.F., 2010. "Energy and exergy efficiency comparison of horizontal and vertical axis wind turbines," Renewable Energy, Elsevier, vol. 35(9), pages 2102-2113.
    2. Thema, M. & Bauer, F. & Sterner, M., 2019. "Power-to-Gas: Electrolysis and methanation status review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 775-787.
    3. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    4. Bernagozzi, Marco & Panesar, Angad S. & Morgan, Robert, 2019. "Molten salt selection methodology for medium temperature liquid air energy storage application," Applied Energy, Elsevier, vol. 248(C), pages 500-511.
    5. Marco Sorrentino & Antonio Adamo & Gianmarco Nappi, 2019. "Self-Sufficient and Islanded-Oriented Design of a Reversible Solid Oxide Cell-Based Renewable Microgrid," Energies, MDPI, vol. 12(17), pages 1-15, August.
    6. Aldo Orioli & Vincenzo Franzitta & Alessandra Di Gangi & Ferdinando Foresta, 2016. "The Recent Change in the Italian Policies for Photovoltaics: Effects on the Energy Demand Coverage of Grid-Connected PV Systems Installed in Urban Contexts," Energies, MDPI, vol. 9(11), pages 1-31, November.
    7. Royo, Patricia & Acevedo, Luis & Ferreira, Victor J. & García-Armingol, Tatiana & López-Sabirón, Ana M. & Ferreira, Germán, 2019. "High-temperature PCM-based thermal energy storage for industrial furnaces installed in energy-intensive industries," Energy, Elsevier, vol. 173(C), pages 1030-1040.
    8. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    9. Srikanth, S. & Heddrich, M.P. & Gupta, S. & Friedrich, K.A., 2018. "Transient reversible solid oxide cell reactor operation – Experimentally validated modeling and analysis," Applied Energy, Elsevier, vol. 232(C), pages 473-488.
    10. Wendel, Christopher H. & Braun, Robert J., 2016. "Design and techno-economic analysis of high efficiency reversible solid oxide cell systems for distributed energy storage," Applied Energy, Elsevier, vol. 172(C), pages 118-131.
    11. Braas, Hagen & Jordan, Ulrike & Best, Isabelle & Orozaliev, Janybek & Vajen, Klaus, 2020. "District heating load profiles for domestic hot water preparation with realistic simultaneity using DHWcalc and TRNSYS," Energy, Elsevier, vol. 201(C).
    12. Lai, Chun Sing & McCulloch, Malcolm D., 2017. "Levelized cost of electricity for solar photovoltaic and electrical energy storage," Applied Energy, Elsevier, vol. 190(C), pages 191-203.
    13. Ramadhani, Farah & Hussain, M.A. & Mokhlis, Hazlie & Fazly, Muhamad & Ali, Jarinah Mohd., 2019. "Evaluation of solid oxide fuel cell based polygeneration system in residential areas integrating with electric charging and hydrogen fueling stations for vehicles," Applied Energy, Elsevier, vol. 238(C), pages 1373-1388.
    14. Orioli, Aldo & Di Gangi, Alessandra, 2016. "Five-years-long effects of the Italian policies for photovoltaics on the energy demand coverage of grid-connected PV systems installed in urban contexts," Energy, Elsevier, vol. 113(C), pages 444-460.
    15. Santhanam, S. & Heddrich, M.P. & Riedel, M. & Friedrich, K.A., 2017. "Theoretical and experimental study of Reversible Solid Oxide Cell (r-SOC) systems for energy storage," Energy, Elsevier, vol. 141(C), pages 202-214.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Chunjun & Strbac, Goran & Zong, Yi & You, Shi & Træholt, Chresten & Brandon, Nigel & Wang, Jiawei & Ameli, Hossein, 2024. "Modeling and optimal operation of reversible solid oxide cells considering heat recovery and mode switching dynamics in microgrids," Applied Energy, Elsevier, vol. 357(C).
    2. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "Dynamic simulation and thermoeconomic analysis of a power to gas system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. del Pozo Gonzalez, Hector & Bernadet, Lucile & Torrell, Marc & Bianchi, Fernando D. & Tarancón, Albert & Gomis-Bellmunt, Oriol & Dominguez-Garcia, Jose Luis, 2023. "Power transition cycles of reversible solid oxide cells and its impacts on microgrids," Applied Energy, Elsevier, vol. 352(C).
    4. Bo, Yaolong & Xia, Yanghong & Wei, Wei & Li, Zichen & Zhao, Bo & Lv, Zeyan, 2023. "Hyperfine optimal dispatch for integrated energy microgrid considering uncertainty," Applied Energy, Elsevier, vol. 334(C).
    5. Paolo Aliberti & Marco Sorrentino & Marco Califano & Cesare Pianese & Luca Capozucca & Laura Cristiani & Gianpiero Lops & Roberto Mancini, 2023. "Modelling Methodologies to Design and Control Renewables and Hydrogen-Based Telecom Towers Power Supply Systems," Energies, MDPI, vol. 16(17), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vitale, F. & Rispoli, N. & Sorrentino, M. & Rosen, M.A. & Pianese, C., 2021. "On the use of dynamic programming for optimal energy management of grid-connected reversible solid oxide cell-based renewable microgrids," Energy, Elsevier, vol. 225(C).
    2. Reznicek, Evan P. & Braun, Robert J., 2020. "Reversible solid oxide cell systems for integration with natural gas pipeline and carbon capture infrastructure for grid energy management," Applied Energy, Elsevier, vol. 259(C).
    3. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "The Economic Feasibility of Residential Energy Storage Combined with PV Panels: The Role of Subsidies in Italy," Energies, MDPI, vol. 10(9), pages 1-18, September.
    4. Wang, Chaoyang & Chen, Ming & Liu, Ming & Yan, Junjie, 2020. "Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes," Applied Energy, Elsevier, vol. 263(C).
    5. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "Economic Analysis of a Photovoltaic System: A Resource for Residential Households," Energies, MDPI, vol. 10(6), pages 1-15, June.
    6. Pereira da Silva, Patrícia & Dantas, Guilherme & Pereira, Guillermo Ivan & Câmara, Lorrane & De Castro, Nivalde J., 2019. "Photovoltaic distributed generation – An international review on diffusion, support policies, and electricity sector regulatory adaptation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 30-39.
    7. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    8. Xiao, Gang & Sun, Anwei & Liu, Hongwei & Ni, Meng & Xu, Haoran, 2023. "Thermal management of reversible solid oxide cells in the dynamic mode switching," Applied Energy, Elsevier, vol. 331(C).
    9. Preininger, Michael & Stoeckl, Bernhard & Subotić, Vanja & Mittmann, Frank & Hochenauer, Christoph, 2019. "Performance of a ten-layer reversible Solid Oxide Cell stack (rSOC) under transient operation for autonomous application," Applied Energy, Elsevier, vol. 254(C).
    10. Legrand, Mathieu & Labajo-Hurtado, Raúl & Rodríguez-Antón, Luis Miguel & Doce, Yolanda, 2022. "Price arbitrage optimization of a photovoltaic power plant with liquid air energy storage. Implementation to the Spanish case," Energy, Elsevier, vol. 239(PA).
    11. Zhang, Qijun & Dong, Jianning & Chen, Heng & Feng, Fuyuan & Xu, Gang & Wang, Xiuyan & Liu, Tong, 2024. "Dynamic characteristics and economic analysis of a coal-fired power plant integrated with molten salt thermal energy storage for improving peaking capacity," Energy, Elsevier, vol. 290(C).
    12. Wang, Ligang & Zhang, Yumeng & Pérez-Fortes, Mar & Aubin, Philippe & Lin, Tzu-En & Yang, Yongping & Maréchal, François & Van herle, Jan, 2020. "Reversible solid-oxide cell stack based power-to-x-to-power systems: Comparison of thermodynamic performance," Applied Energy, Elsevier, vol. 275(C).
    13. Alexandra G. Papadopoulou & George Vasileiou & Alexandros Flamos, 2020. "A Comparison of Dispatchable RES Technoeconomics: Is There a Niche for Concentrated Solar Power?," Energies, MDPI, vol. 13(18), pages 1-22, September.
    14. Zhun Meng & Yi-Feng Wang & Liang Yang & Wei Li, 2017. "Analysis of Power Loss and Improved Simulation Method of a High Frequency Dual-Buck Full-Bridge Inverter," Energies, MDPI, vol. 10(3), pages 1-18, March.
    15. Cesare Saccani & Marco Pellegrini & Alessandro Guzzini, 2020. "Analysis of the Existing Barriers for the Market Development of Power to Hydrogen (P2H) in Italy," Energies, MDPI, vol. 13(18), pages 1-29, September.
    16. Yajing Gao & Fushen Xue & Wenhai Yang & Yanping Sun & Yongjian Sun & Haifeng Liang & Peng Li, 2017. "A Three-Part Electricity Price Mechanism for Photovoltaic-Battery Energy Storage Power Plants Considering the Power Quality and Ancillary Service," Energies, MDPI, vol. 10(9), pages 1-21, August.
    17. Samuel Matthew G. Dumlao & Keiichi N. Ishihara, 2021. "Dynamic Cost-Optimal Assessment of Complementary Diurnal Electricity Storage Capacity in High PV Penetration Grid," Energies, MDPI, vol. 14(15), pages 1-23, July.
    18. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    19. Tong Koecklin, Manuel & Fitiwi, Desta & de Carolis, Joseph F. & Curtis, John, 2020. "Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland," Papers WP653, Economic and Social Research Institute (ESRI).
    20. del Pozo Gonzalez, Hector & Bernadet, Lucile & Torrell, Marc & Bianchi, Fernando D. & Tarancón, Albert & Gomis-Bellmunt, Oriol & Dominguez-Garcia, Jose Luis, 2023. "Power transition cycles of reversible solid oxide cells and its impacts on microgrids," Applied Energy, Elsevier, vol. 352(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:319:y:2022:i:c:s0306261922006250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.