IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp2490-2498.html
   My bibliography  Save this article

An improvement of measurements reliability in thermal processes by application of the advanced data reconciliation method with the use of fuzzy uncertainties of measurements

Author

Listed:
  • Szega, Marcin

Abstract

An improvement of the measurements reliability in thermal processes by the application of the advanced data validation and reconciliation (DVR) methodology strictly depends on their assumed uncertainties. In thermal processes, which are realized in industry, the measurements uncertainties are often determined by the use of all available information concerning possible variability of measurement results. Very often, the determination of measurements uncertainties require professional knowledge, however this approach may lead to imprecise results The paper presents an application of the advanced data reconciliation method with the use of uncertainties of measurements expressed by fuzzy numbers. The proposed methodology has been presented based on example of gas-and-steam CHP unit. In order to compare calculation results for deterministic and the fuzzy uncertainties, the complex standard uncertainties of main assessment indicators of analyzed CHP unit operation supervision as well as the relative entropy of information – Kullback-Leibler divergence for two multivariate normal distributions have been chosen. By the use of mentioned criterions, it has been observed that better results are obtained with the proposed method using fuzzy measurements uncertainties. The results of this study showed that calculated values of uncertainties of energy assessment indicators and the relative information entropy of a whole measurements system are both smaller and more reliable.

Suggested Citation

  • Szega, Marcin, 2017. "An improvement of measurements reliability in thermal processes by application of the advanced data reconciliation method with the use of fuzzy uncertainties of measurements," Energy, Elsevier, vol. 141(C), pages 2490-2498.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2490-2498
    DOI: 10.1016/j.energy.2017.04.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217307223
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.04.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Szega, Marcin & Nowak, Grzegorz Tadeusz, 2015. "An optimization of redundant measurements location for thermal capacity of power unit steam boiler calculations using data reconciliation method," Energy, Elsevier, vol. 92(P1), pages 135-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kolenda, Z. & Styrylska, T., 2018. "To memory of Professor Jan Szargut," Energy, Elsevier, vol. 161(C), pages 1226-1233.
    2. Szega, Marcin, 2018. "Issues of an optimization of measurements location in redundant measurements systems of an energy conversion process – A case study," Energy, Elsevier, vol. 165(PA), pages 1034-1047.
    3. Dong, Zhe & Li, Bowen & Li, Junyi & Huang, Xiaojin & Zhang, Zuoyi, 2022. "Online reliability assessment of energy systems based on a high-order extended-state-observer with application to nuclear reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Loyola-Fuentes, José & Smith, Robin, 2019. "Data reconciliation and gross error detection in crude oil pre-heat trains undergoing shell-side and tube-side fouling deposition," Energy, Elsevier, vol. 183(C), pages 368-384.
    5. Szega, Marcin, 2020. "Methodology of advanced data validation and reconciliation application in industrial thermal processes," Energy, Elsevier, vol. 198(C).
    6. Liu, Bin & Gao, Qun & Jin, Hongyu & Lei, Yu & Liu, Chunlu, 2022. "System indeterminacy analysis in the embodied energy network of global construction industries," Energy, Elsevier, vol. 261(PA).
    7. Szega, Marcin, 2018. "Extended applications of the advanced data validation and reconciliation method in studies of energy conversion processes," Energy, Elsevier, vol. 161(C), pages 156-171.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szega, Marcin, 2018. "Issues of an optimization of measurements location in redundant measurements systems of an energy conversion process – A case study," Energy, Elsevier, vol. 165(PA), pages 1034-1047.
    2. Plis, Marcin & Rusinowski, Henryk, 2019. "Identification of mathematical models of thermal processes with reconciled measurement results," Energy, Elsevier, vol. 177(C), pages 192-202.
    3. Szega, Marcin & Czyż, Tomasz, 2019. "Problems of calculation the energy efficiency of a dual-fuel steam boiler fired with industrial waste gases," Energy, Elsevier, vol. 178(C), pages 134-144.
    4. Eslick, John C. & Zamarripa, Miguel A. & Ma, Jinliang & Wang, Maojian & Bhattacharya, Indrajit & Rychener, Brian & Pinkston, Philip & Bhattacharyya, Debangsu & Zitney, Stephen E. & Burgard, Anthony P., 2022. "Predictive modeling of a subcritical pulverized-coal power plant for optimization: Parameter estimation, validation, and application," Applied Energy, Elsevier, vol. 319(C).
    5. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Data reconciliation for the overall thermal system of a steam turbine power plant," Applied Energy, Elsevier, vol. 165(C), pages 1037-1051.
    6. Szega, Marcin, 2018. "Extended applications of the advanced data validation and reconciliation method in studies of energy conversion processes," Energy, Elsevier, vol. 161(C), pages 156-171.
    7. Guo, Sisi & Liu, Pei & Li, Zheng, 2016. "Identification and isolability of multiple gross errors in measured data for power plants," Energy, Elsevier, vol. 114(C), pages 177-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:2490-2498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.