IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v318y2022ics0306261922004895.html
   My bibliography  Save this article

Field demonstration and implementation analysis of model predictive control in an office HVAC system

Author

Listed:
  • Blum, David
  • Wang, Zhe
  • Weyandt, Chris
  • Kim, Donghun
  • Wetter, Michael
  • Hong, Tianzhen
  • Piette, Mary Ann

Abstract

Model Predictive Control (MPC) is a promising technique to address growing needs for heating, ventilation, and air-conditioning (HVAC) systems to operate more efficiently and with greater flexibility. However, due to a number of factors, including the required implementation expertise, lack of high quality data, and a risk-adverse industry, MPC has yet to gain widespread adoption. While many previous studies have shown the advantages of MPC, few analyzed the implementation effort and associated practical challenges. In addition, previous work has developed an open-source, Modelica-based tool-chain that automatically generates optimal control, parameter estimation, and state estimation problems aimed at facilitating MPC implementation. Therefore, this study demonstrates usage of this tool-chain to implement MPC in a real office building, discusses practical challenges of implementing MPC, and estimates the implementation effort associated with various tasks in order to inform the development of future workflows and serve as an initial benchmark for their impact on reducing implementation effort. This study finds that the implemented MPC saves approximately 40% of HVAC energy over the existing control during a two-month trial period and that tasks related to data collection and controller deployment activities can each require as much effort as model generation.

Suggested Citation

  • Blum, David & Wang, Zhe & Weyandt, Chris & Kim, Donghun & Wetter, Michael & Hong, Tianzhen & Piette, Mary Ann, 2022. "Field demonstration and implementation analysis of model predictive control in an office HVAC system," Applied Energy, Elsevier, vol. 318(C).
  • Handle: RePEc:eee:appene:v:318:y:2022:i:c:s0306261922004895
    DOI: 10.1016/j.apenergy.2022.119104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922004895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Široký, Jan & Oldewurtel, Frauke & Cigler, Jiří & Prívara, Samuel, 2011. "Experimental analysis of model predictive control for an energy efficient building heating system," Applied Energy, Elsevier, vol. 88(9), pages 3079-3087.
    2. Blum, D.H. & Arendt, K. & Rivalin, L. & Piette, M.A. & Wetter, M. & Veje, C.T., 2019. "Practical factors of envelope model setup and their effects on the performance of model predictive control for building heating, ventilating, and air conditioning systems," Applied Energy, Elsevier, vol. 236(C), pages 410-425.
    3. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2019. "Data fusion in predicting internal heat gains for office buildings through a deep learning approach," Applied Energy, Elsevier, vol. 240(C), pages 386-398.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Peng & Sun, Junqing & Yoon, Sungmin & Zhao, Liang & Liang, Ruobing, 2024. "A global optimization method for data center air conditioning water systems based on predictive optimization control," Energy, Elsevier, vol. 295(C).
    2. Gao, Yuan & Miyata, Shohei & Akashi, Yasunori, 2023. "Energy saving and indoor temperature control for an office building using tube-based robust model predictive control," Applied Energy, Elsevier, vol. 341(C).
    3. Jiang, Yuliang & Zhu, Shanying & Xu, Qimin & Yang, Bo & Guan, Xinping, 2023. "Hybrid modeling-based temperature and humidity adaptive control for a multi-zone HVAC system," Applied Energy, Elsevier, vol. 334(C).
    4. Chen, Yibo & Gao, Junxi & Yang, Jianzhong & Berardi, Umberto & Cui, Guoyou, 2023. "An hour-ahead predictive control strategy for maximizing natural ventilation in passive buildings based on weather forecasting," Applied Energy, Elsevier, vol. 333(C).
    5. Pergantis, Elias N. & Priyadarshan, & Theeb, Nadah Al & Dhillon, Parveen & Ore, Jonathan P. & Ziviani, Davide & Groll, Eckhard A. & Kircher, Kevin J., 2024. "Field demonstration of predictive heating control for an all-electric house in a cold climate," Applied Energy, Elsevier, vol. 360(C).
    6. Zhuang, Dian & Gan, Vincent J.L. & Duygu Tekler, Zeynep & Chong, Adrian & Tian, Shuai & Shi, Xing, 2023. "Data-driven predictive control for smart HVAC system in IoT-integrated buildings with time-series forecasting and reinforcement learning," Applied Energy, Elsevier, vol. 338(C).
    7. Ham, Sang woo & Paul, Lazlo & Kim, Donghun & Pritoni, Marco & Brown, Richard & Feng, Jingjuan(Dove), 2024. "Decarbonization of heat pump dual fuel systems using a practical model predictive control: Field demonstration in a small commercial building," Applied Energy, Elsevier, vol. 361(C).
    8. Yang, Shiyu & Oliver Gao, H. & You, Fengqi, 2022. "Model predictive control in phase-change-material-wallboard-enhanced building energy management considering electricity price dynamics," Applied Energy, Elsevier, vol. 326(C).
    9. Leonidas Zouloumis & Angelos Karanasos & Nikolaos Ploskas & Giorgos Panaras, 2023. "Multicriteria Design and Operation Optimization of a Solar-Assisted Geothermal Heat Pump System," Energies, MDPI, vol. 16(3), pages 1-16, January.
    10. Nweye, Kingsley & Sankaranarayanan, Siva & Nagy, Zoltan, 2023. "MERLIN: Multi-agent offline and transfer learning for occupant-centric operation of grid-interactive communities," Applied Energy, Elsevier, vol. 346(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhan, Sicheng & Chong, Adrian, 2021. "Data requirements and performance evaluation of model predictive control in buildings: A modeling perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    2. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2020. "Building thermal load prediction through shallow machine learning and deep learning," Applied Energy, Elsevier, vol. 263(C).
    3. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    4. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    5. Yang, Shiyu & Wan, Man Pun & Ng, Bing Feng & Dubey, Swapnil & Henze, Gregor P. & Chen, Wanyu & Baskaran, Krishnamoorthy, 2020. "Experimental study of model predictive control for an air-conditioning system with dedicated outdoor air system," Applied Energy, Elsevier, vol. 257(C).
    6. Muniak, Damian Piotr, 2014. "A new methodology to determine the pre-setting of the control valve in a heating installation. A general model," Applied Energy, Elsevier, vol. 135(C), pages 35-42.
    7. Lork, Clement & Li, Wen-Tai & Qin, Yan & Zhou, Yuren & Yuen, Chau & Tushar, Wayes & Saha, Tapan K., 2020. "An uncertainty-aware deep reinforcement learning framework for residential air conditioning energy management," Applied Energy, Elsevier, vol. 276(C).
    8. Gokhale, Gargya & Claessens, Bert & Develder, Chris, 2022. "Physics informed neural networks for control oriented thermal modeling of buildings," Applied Energy, Elsevier, vol. 314(C).
    9. Molinari, Marco & Anund Vogel, Jonas & Rolando, Davide & Lundqvist, Per, 2023. "Using living labs to tackle innovation bottlenecks: the KTH Live-In Lab case study," Applied Energy, Elsevier, vol. 338(C).
    10. Pisello, Anna Laura & Goretti, Michele & Cotana, Franco, 2012. "A method for assessing buildings’ energy efficiency by dynamic simulation and experimental activity," Applied Energy, Elsevier, vol. 97(C), pages 419-429.
    11. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    12. Ma, Peizheng & Wang, Lin-Shu & Guo, Nianhua, 2015. "Maximum window-to-wall ratio of a thermally autonomous building as a function of envelope U-value and ambient temperature amplitude," Applied Energy, Elsevier, vol. 146(C), pages 84-91.
    13. Sachin Kumar & Zairu Nisha & Jagvinder Singh & Anuj Kumar Sharma, 2022. "Sensor network driven novel hybrid model based on feature selection and SVR to predict indoor temperature for energy consumption optimisation in smart buildings," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 3048-3061, December.
    14. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    15. Wei, Ziqing & Zhang, Tingwei & Yue, Bao & Ding, Yunxiao & Xiao, Ran & Wang, Ruzhu & Zhai, Xiaoqiang, 2021. "Prediction of residential district heating load based on machine learning: A case study," Energy, Elsevier, vol. 231(C).
    16. Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2019. "Predicting plug loads with occupant count data through a deep learning approach," Energy, Elsevier, vol. 181(C), pages 29-42.
    17. Hou, Juan & Li, Haoran & Nord, Natasa, 2022. "Nonlinear model predictive control for the space heating system of a university building in Norway," Energy, Elsevier, vol. 253(C).
    18. Yuwen You & Zhonghua Wang & Zhihao Liu & Chunmei Guo & Bin Yang, 2024. "Load Prediction of Regional Heat Exchange Station Based on Fuzzy Clustering Based on Fourier Distance and Convolutional Neural Network–Bidirectional Long Short-Term Memory Network," Energies, MDPI, vol. 17(16), pages 1-19, August.
    19. Sun, Chunhua & Liu, Yiting & Cao, Shanshan & Chen, Jiali & Xia, Guoqiang & Wu, Xiangdong, 2022. "Identification of control regularity of heating stations based on cross-correlation function dynamic time delay method," Energy, Elsevier, vol. 246(C).
    20. Žáčeková, Eva & Váňa, Zdeněk & Cigler, Jiří, 2014. "Towards the real-life implementation of MPC for an office building: Identification issues," Applied Energy, Elsevier, vol. 135(C), pages 53-62.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:318:y:2022:i:c:s0306261922004895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.