IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v134y2014icp413-425.html
   My bibliography  Save this article

Biological methanation of hydrogen within biogas plants: A model-based feasibility study

Author

Listed:
  • Bensmann, A.
  • Hanke-Rauschenbach, R.
  • Heyer, R.
  • Kohrs, F.
  • Benndorf, D.
  • Reichl, U.
  • Sundmacher, K.

Abstract

One option to utilize excess electric energy is its conversion to hydrogen and the subsequent methanation. An alternative to the classical chemical Sabatier process is the biological methanation (methanogenesis) within biogas plants. In conventional biogas plants methane and carbon dioxide is produced. The latter can be directly converted to methane by feeding hydrogen into the reactor, since hydrogenotrophic bacteria are present.

Suggested Citation

  • Bensmann, A. & Hanke-Rauschenbach, R. & Heyer, R. & Kohrs, F. & Benndorf, D. & Reichl, U. & Sundmacher, K., 2014. "Biological methanation of hydrogen within biogas plants: A model-based feasibility study," Applied Energy, Elsevier, vol. 134(C), pages 413-425.
  • Handle: RePEc:eee:appene:v:134:y:2014:i:c:p:413-425
    DOI: 10.1016/j.apenergy.2014.08.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261914008587
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2014.08.047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong, Bao-Xia & Zhao, Juan & Wang, Long-Zheng & Teng, Yun-Lei & Liu, Wen-Long & Wang, Lu, 2017. "Mechanochemical synthesis of COx-free hydrogen and methane fuel mixtures at room temperature from light metal hydrides and carbon dioxide," Applied Energy, Elsevier, vol. 204(C), pages 741-748.
    2. Götz, Manuel & Lefebvre, Jonathan & Mörs, Friedemann & McDaniel Koch, Amy & Graf, Frank & Bajohr, Siegfried & Reimert, Rainer & Kolb, Thomas, 2016. "Renewable Power-to-Gas: A technological and economic review," Renewable Energy, Elsevier, vol. 85(C), pages 1371-1390.
    3. Vo, Truc T.Q. & Xia, Ao & Wall, David M. & Murphy, Jerry D., 2017. "Use of surplus wind electricity in Ireland to produce compressed renewable gaseous transport fuel through biological power to gas systems," Renewable Energy, Elsevier, vol. 105(C), pages 495-504.
    4. Elia Judith Martínez & Ana Sotres & Cristián B. Arenas & Daniel Blanco & Olegario Martínez & Xiomar Gómez, 2019. "Improving Anaerobic Digestion of Sewage Sludge by Hydrogen Addition: Analysis of Microbial Populations and Process Performance," Energies, MDPI, vol. 12(7), pages 1-15, March.
    5. Liu, Changyu & Sun, Yongxiang & Li, Dong & Bian, Ji & Wu, Yangyang & Li, Pengfei & Sun, Yong, 2022. "Influence of enclosure filled with phase change material on photo-thermal regulation of direct absorption anaerobic reactor: Numerical and experimental study," Applied Energy, Elsevier, vol. 313(C).
    6. Lü, Fan & Hua, Zhang & Shao, Liming & He, Pinjing, 2018. "Loop bioenergy production and carbon sequestration of polymeric waste by integrating biochemical and thermochemical conversion processes: A conceptual framework and recent advances," Renewable Energy, Elsevier, vol. 124(C), pages 202-211.
    7. Burkhardt, Marko & Jordan, Isabel & Heinrich, Sabrina & Behrens, Johannes & Ziesche, André & Busch, Günter, 2019. "Long term and demand-oriented biocatalytic synthesis of highly concentrated methane in a trickle bed reactor," Applied Energy, Elsevier, vol. 240(C), pages 818-826.
    8. Inkeri, Eero & Tynjälä, Tero & Laari, Arto & Hyppänen, Timo, 2018. "Dynamic one-dimensional model for biological methanation in a stirred tank reactor," Applied Energy, Elsevier, vol. 209(C), pages 95-107.
    9. Vo, Truc T.Q. & Wall, David M. & Ring, Denis & Rajendran, Karthik & Murphy, Jerry D., 2018. "Techno-economic analysis of biogas upgrading via amine scrubber, carbon capture and ex-situ methanation," Applied Energy, Elsevier, vol. 212(C), pages 1191-1202.
    10. Nicole Meinusch & Susanne Kramer & Oliver Körner & Jürgen Wiese & Ingolf Seick & Anita Beblek & Regine Berges & Bernhard Illenberger & Marco Illenberger & Jennifer Uebbing & Maximilian Wolf & Gunter S, 2021. "Integrated Cycles for Urban Biomass as a Strategy to Promote a CO 2 -Neutral Society—A Feasibility Study," Sustainability, MDPI, vol. 13(17), pages 1-22, August.
    11. Tuğçe Dağlıoğlu & Tuba Ceren Öğüt & Guven Ozdemir & Nuri Azbar, 2021. "Comparative analysis of the effect of cell immobilization on the hydrogenothrophic biomethanation of CO2," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 493-505, June.
    12. Bensmann, Astrid & Hanke-Rauschenbach, Richard & Heyer, Robert & Kohrs, Fabian & Benndorf, Dirk & Kausmann, Robert & Plöchl, Matthias & Heiermann, Monika & Reichl, Udo & Sundmacher, Kai, 2016. "Diagnostic concept for dynamically operated biogas production plants," Renewable Energy, Elsevier, vol. 96(PA), pages 479-489.
    13. Díaz, Israel & Fdz-Polanco, Fernando & Mutsvene, Boldwin & Fdz-Polanco, María, 2020. "Effect of operating pressure on direct biomethane production from carbon dioxide and exogenous hydrogen in the anaerobic digestion of sewage sludge," Applied Energy, Elsevier, vol. 280(C).
    14. Brynolf, Selma & Taljegard, Maria & Grahn, Maria & Hansson, Julia, 2018. "Electrofuels for the transport sector: A review of production costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1887-1905.
    15. Lamb, Jacob J. & Bernard, Olivier & Sarker, Shiplu & Lien, Kristian M. & Hjelme, Dag Roar, 2019. "Perspectives of optical colourimetric sensors for anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 87-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:134:y:2014:i:c:p:413-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.