IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v311y2022ics0306261922001003.html
   My bibliography  Save this article

Event-driven two-stage solution to non-intrusive load monitoring

Author

Listed:
  • Yan, Lei
  • Tian, Wei
  • Han, Jiayu
  • Li, Zuy

Abstract

To achieve long-term temperature goal of Paris Agreement and carbon neutrality by the mid-century, nonintrusive load monitoring (NILM) provides a promising approach to reducing electricity usage and carbon emission for residential and commercial buildings. Existing methods of NILM in literatures generally suffer from high computational complexity and/or low accuracy in identifying working household appliances. This paper proposes an event-driven Factorial Hidden Markov model (eFHMM) for multiple appliances with multiple states in a household, aiming for low computational complexity and high load disaggregation accuracy on with high-resolution electrical measurements, which fills the research gaps in terms of complexity and accuracy. The proposed eFHMM decreases the computational complexity to be linear to the event number, which ensures online load disaggregation. Furthermore, the eFHMM is solved in two stages, where the first stage identifies state-changing appliance using transient signatures and the second stage confirms the inferred states using steady-state signatures. The combination of transient and steady-state signatures, which are extracted from transient and steady periods segmented by detected events, enhances the uniqueness of each state transition and associated appliances, which ensures accurate load disaggregation. The event-driven two-stage NILM solution, termed as eFHMM-TS, is naturally fit into an edge-cloud framework, which makes possible the real-world application of NILM. The proposed eFHMM-TS method is validated on the high-resolution datasets such as PLAID, LIFTED and synD and low-resolution datasets such as AMPds, REFIT, REDD and compares with 20 different methods. Results demonstrate that the eFHMM-TS method outperforms other methods on the high-resolution datasets and can be applied in practice.

Suggested Citation

  • Yan, Lei & Tian, Wei & Han, Jiayu & Li, Zuy, 2022. "Event-driven two-stage solution to non-intrusive load monitoring," Applied Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922001003
    DOI: 10.1016/j.apenergy.2022.118627
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922001003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118627?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Enríquez, R. & Jiménez, M.J. & Heras, M.R., 2017. "Towards non-intrusive thermal load Monitoring of buildings: BES calibration," Applied Energy, Elsevier, vol. 191(C), pages 44-54.
    2. Cominola, A. & Giuliani, M. & Piga, D. & Castelletti, A. & Rizzoli, A.E., 2017. "A Hybrid Signature-based Iterative Disaggregation algorithm for Non-Intrusive Load Monitoring," Applied Energy, Elsevier, vol. 185(P1), pages 331-344.
    3. Chang, Hsueh-Hsien & Yang, Hong-Tzer, 2009. "Applying a non-intrusive energy-management system to economic dispatch for a cogeneration system and power utility," Applied Energy, Elsevier, vol. 86(11), pages 2335-2343, November.
    4. Liu, Bo & Luan, Wenpeng & Yu, Yixin, 2017. "Dynamic time warping based non-intrusive load transient identification," Applied Energy, Elsevier, vol. 195(C), pages 634-645.
    5. Shi, Xin & Ming, Hao & Shakkottai, Srinivas & Xie, Le & Yao, Jianguo, 2019. "Nonintrusive load monitoring in residential households with low-resolution data," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. David McCollum & Volker Krey & Peter Kolp & Yu Nagai & Keywan Riahi, 2014. "Transport electrification: A key element for energy system transformation and climate stabilization," Climatic Change, Springer, vol. 123(3), pages 651-664, April.
    7. Zhuang Zheng & Hainan Chen & Xiaowei Luo, 2018. "A Supervised Event-Based Non-Intrusive Load Monitoring for Non-Linear Appliances," Sustainability, MDPI, vol. 10(4), pages 1-28, March.
    8. Stenner, Karen & Frederiks, Elisha R. & Hobman, Elizabeth V. & Cook, Stephanie, 2017. "Willingness to participate in direct load control: The role of consumer distrust," Applied Energy, Elsevier, vol. 189(C), pages 76-88.
    9. Volker Krey & Leon Clarke, 2011. "Role of renewable energy in climate mitigation: a synthesis of recent scenarios," Climate Policy, Taylor & Francis Journals, vol. 11(4), pages 1131-1158, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Chuyi & Zheng, Kedi & Guo, Hongye & Chen, Qixin, 2023. "A mixed-integer programming approach for industrial non-intrusive load monitoring," Applied Energy, Elsevier, vol. 330(PA).
    2. Wang, Gang & Li, Zhao & Luo, Zhao & Zhang, Tao & Lin, Mingliang & Li, Jiahao & Shen, Xin, 2024. "Dynamic adaptive event detection strategy based on power change-point weighting model," Applied Energy, Elsevier, vol. 361(C).
    3. Yan, Lei & Tian, Wei & Wang, Hong & Hao, Xing & Li, Zuyi, 2023. "Robust event detection for residential load disaggregation," Applied Energy, Elsevier, vol. 331(C).
    4. Petros Papageorgiou & Dimitra Mylona & Konstantinos Stergiou & Aggelos S. Bouhouras, 2023. "A Time-Driven Deep Learning NILM Framework Based on Novel Current Harmonic Distortion Images," Sustainability, MDPI, vol. 15(17), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Chunhe & Jing, Wei & Zeng, Peng & Yu, Haibin & Rosenberg, Catherine, 2018. "Energy consumption analysis of residential swimming pools for peak load shaving," Applied Energy, Elsevier, vol. 220(C), pages 176-191.
    2. Liu, Yu & Liu, Wei & Shen, Yiwen & Zhao, Xin & Gao, Shan, 2021. "Toward smart energy user: Real time non-intrusive load monitoring with simultaneous switching operations," Applied Energy, Elsevier, vol. 287(C).
    3. Wang, Shuangyuan & Li, Ran & Evans, Adrian & Li, Furong, 2020. "Regional nonintrusive load monitoring for low voltage substations and distributed energy resources," Applied Energy, Elsevier, vol. 260(C).
    4. Shi, Xin & Ming, Hao & Shakkottai, Srinivas & Xie, Le & Yao, Jianguo, 2019. "Nonintrusive load monitoring in residential households with low-resolution data," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Effective non-intrusive load monitoring of buildings based on a novel multi-descriptor fusion with dimensionality reduction," Applied Energy, Elsevier, vol. 279(C).
    6. Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
    7. Dai, Hancheng & Silva Herran, Diego & Fujimori, Shinichiro & Masui, Toshihiko, 2016. "Key factors affecting long-term penetration of global onshore wind energy integrating top-down and bottom-up approaches," Renewable Energy, Elsevier, vol. 85(C), pages 19-30.
    8. Dinesh, Chinthaka & Welikala, Shirantha & Liyanage, Yasitha & Ekanayake, Mervyn Parakrama B. & Godaliyadda, Roshan Indika & Ekanayake, Janaka, 2017. "Non-intrusive load monitoring under residential solar power influx," Applied Energy, Elsevier, vol. 205(C), pages 1068-1080.
    9. Johnson, Nils & Strubegger, Manfred & McPherson, Madeleine & Parkinson, Simon C. & Krey, Volker & Sullivan, Patrick, 2017. "A reduced-form approach for representing the impacts of wind and solar PV deployment on the structure and operation of the electricity system," Energy Economics, Elsevier, vol. 64(C), pages 651-664.
    10. Luan, Wenpeng & Wei, Zun & Liu, Bo & Yu, Yixin, 2022. "Non-intrusive power waveform modeling and identification of air conditioning load," Applied Energy, Elsevier, vol. 324(C).
    11. Bonfigli, Roberto & Principi, Emanuele & Fagiani, Marco & Severini, Marco & Squartini, Stefano & Piazza, Francesco, 2017. "Non-intrusive load monitoring by using active and reactive power in additive Factorial Hidden Markov Models," Applied Energy, Elsevier, vol. 208(C), pages 1590-1607.
    12. Liu, Yu & Liu, Congxiao & Ling, Qicheng & Zhao, Xin & Gao, Shan & Huang, Xueliang, 2021. "Toward smart distributed renewable generation via multi-uncertainty featured non-intrusive interactive energy monitoring," Applied Energy, Elsevier, vol. 303(C).
    13. Himeur, Yassine & Alsalemi, Abdullah & Bensaali, Faycal & Amira, Abbes, 2020. "Robust event-based non-intrusive appliance recognition using multi-scale wavelet packet tree and ensemble bagging tree," Applied Energy, Elsevier, vol. 267(C).
    14. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    15. Hari Prasad Devarapalli & V. S. S. Siva Sarma Dhanikonda & Sitarama Brahmam Gunturi, 2020. "Non-Intrusive Identification of Load Patterns in Smart Homes Using Percentage Total Harmonic Distortion," Energies, MDPI, vol. 13(18), pages 1-15, September.
    16. Tomasz Jasiński, 2020. "Modelling the Disaggregated Demand for Electricity in Residential Buildings Using Artificial Neural Networks (Deep Learning Approach)," Energies, MDPI, vol. 13(5), pages 1-16, March.
    17. Liu, Chao & Akintayo, Adedotun & Jiang, Zhanhong & Henze, Gregor P. & Sarkar, Soumik, 2018. "Multivariate exploration of non-intrusive load monitoring via spatiotemporal pattern network," Applied Energy, Elsevier, vol. 211(C), pages 1106-1122.
    18. Younghoon Kwak & Jihyun Hwang & Taewon Lee, 2018. "Load Disaggregation via Pattern Recognition: A Feasibility Study of a Novel Method in Residential Building," Energies, MDPI, vol. 11(4), pages 1-22, April.
    19. Huijuan Wang & Wenrong Yang & Tingyu Chen & Qingxin Yang, 2019. "An Optimal Load Disaggregation Method Based on Power Consumption Pattern for Low Sampling Data," Sustainability, MDPI, vol. 11(1), pages 1-16, January.
    20. Nicole D. Sintov & P. Wesley Schultz, 2017. "Adjustable Green Defaults Can Help Make Smart Homes More Sustainable," Sustainability, MDPI, vol. 9(4), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922001003. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.