Life cycle greenhouse gas emissions of aluminum based on regional industrial transfer in China
Author
Abstract
Suggested Citation
DOI: 10.1111/jiec.13146
Download full text from publisher
References listed on IDEAS
- Ning Ding & Feng Gao & Zhihong Wang & Jianxin Yang, 2016. "Life Cycle Energy and Greenhouse Gas Emissions of Automobiles Using Aluminum in China," Journal of Industrial Ecology, Yale University, vol. 20(4), pages 818-827, August.
- Stephen Casler & Adam Rose, 1998. "Carbon Dioxide Emissions in the U.S. Economy: A Structural Decomposition Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 11(3), pages 349-363, April.
- Ang, B.W & Zhang, F.Q & Choi, Ki-Hong, 1998. "Factorizing changes in energy and environmental indicators through decomposition," Energy, Elsevier, vol. 23(6), pages 489-495.
- Royo, Patricia & Ferreira, Víctor José & López-Sabirón, Ana M. & García-Armingol, Tatiana & Ferreira, Germán, 2018. "Retrofitting strategies for improving the energy and environmental efficiency in industrial furnaces: A case study in the aluminium sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P2), pages 1813-1822.
- Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
- Ding, Ning & Liu, Jingru & Yang, Jianxin & Yang, Dong, 2017. "Comparative life cycle assessment of regional electricity supplies in China," Resources, Conservation & Recycling, Elsevier, vol. 119(C), pages 47-59.
- Ang, B.W. & Liu, Na, 2007. "Handling zero values in the logarithmic mean Divisia index decomposition approach," Energy Policy, Elsevier, vol. 35(1), pages 238-246, January.
- Hao, Han & Geng, Yong & Hang, Wen, 2016. "GHG emissions from primary aluminum production in China: Regional disparity and policy implications," Applied Energy, Elsevier, vol. 166(C), pages 264-272.
- Du, J.D. & Han, W.J. & Peng, Y.H. & Gu, C.C., 2010. "Potential for reducing GHG emissions and energy consumption from implementing the aluminum intensive vehicle fleet in China," Energy, Elsevier, vol. 35(12), pages 4671-4678.
- Liu, Zhe & Geng, Yong & Adams, Michelle & Dong, Liang & Sun, Lina & Zhao, Jingjing & Dong, Huijuan & Wu, Jiao & Tian, Xu, 2016. "Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis," Applied Energy, Elsevier, vol. 166(C), pages 253-263.
- Liu, Jingru & Sun, Xin & Lu, Bin & Zhang, Yunkun & Sun, Rui, 2016. "The life cycle rebound effect of air-conditioner consumption in China," Applied Energy, Elsevier, vol. 184(C), pages 1026-1032.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shuang Li & Liao He & Bo Zhang & Yan Yan & Wentao Jiao & Ning Ding, 2022. "A Comprehensive Evaluation Method for Soil Remediation Technology Selection: Case Study of Ex Situ Thermal Desorption," IJERPH, MDPI, vol. 19(6), pages 1-16, March.
- Li, Shupeng & Wang, Zhe & Yue, Qiang & Zhang, Tingan, 2022. "Analysis of the quantity and spatial characterization of aluminum in-use stocks in China," Resources Policy, Elsevier, vol. 79(C).
- Shen, Angxing & Zhang, Jihong, 2024. "Technologies for CO2 emission reduction and low-carbon development in primary aluminum industry in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
- Jinfeng Han & Bing Feng & Zejun Chen & Zhili Liang & Yuran Chen & Xuemin Liang, 2024. "Simulation and Application of a New Type of Energy-Saving Steel Claw for Aluminum Electrolysis Cells," Sustainability, MDPI, vol. 16(18), pages 1-15, September.
- Yunfeng Huang & Shenghui Cui & Bing Gao & Wei Huang & Shuangying Han & Yuanchao Hu, 2023. "Driving reactive nitrogen emissions in China: Competition between scale and efficiency," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 951-963, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Zhe & Geng, Yong & Adams, Michelle & Dong, Liang & Sun, Lina & Zhao, Jingjing & Dong, Huijuan & Wu, Jiao & Tian, Xu, 2016. "Uncovering driving forces on greenhouse gas emissions in China’ aluminum industry from the perspective of life cycle analysis," Applied Energy, Elsevier, vol. 166(C), pages 253-263.
- Su, Bin & Ang, B.W., 2012. "Structural decomposition analysis applied to energy and emissions: Some methodological developments," Energy Economics, Elsevier, vol. 34(1), pages 177-188.
- Muhammad Yousaf Raza & Yingchao Chen & Songlin Tang, 2022. "Assessing the Green R&D Investment and Patent Generation in Pakistan towards CO 2 Emissions Reduction with a Novel Decomposition Framework," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
- Ma, Chunbo, 2014. "A multi-fuel, multi-sector and multi-region approach to index decomposition: An application to China's energy consumption 1995–2010," Energy Economics, Elsevier, vol. 42(C), pages 9-16.
- Shrestha, Ram M. & Anandarajah, Gabrial & Liyanage, Migara H., 2009. "Factors affecting CO2 emission from the power sector of selected countries in Asia and the Pacific," Energy Policy, Elsevier, vol. 37(6), pages 2375-2384, June.
- Banie Naser Outchiri, 2020. "Contributing to better energy and environmental analyses: how accurate are decomposition analysis results?," Cahiers de recherche 20-11, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
- Wang, Qiang & Li, Rongrong, 2016. "Journey to burning half of global coal: Trajectory and drivers of China׳s coal use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 341-346.
- Lin, Boqiang & Ouyang, Xiaoling, 2014. "Analysis of energy-related CO2 (carbon dioxide) emissions and reduction potential in the Chinese non-metallic mineral products industry," Energy, Elsevier, vol. 68(C), pages 688-697.
- Kaltenegger, Oliver, 2019. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," CAWM Discussion Papers 110, University of Münster, Münster Center for Economic Policy (MEP).
- Yanan Chen & Sheng Lin, 2015. "Study on factors affecting energy-related per capita carbon dioxide emission by multi-sectoral of cities: a case study of Tianjin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 77(2), pages 833-846, June.
- Zha, Donglan & Yang, Guanglei & Wang, Qunwei, 2019. "Investigating the driving factors of regional CO2 emissions in China using the IDA-PDA-MMI method," Energy Economics, Elsevier, vol. 84(C).
- Lin Boqiang & Kui Liu, 2017. "Using LMDI to Analyze the Decoupling of Carbon Dioxide Emissions from China’s Heavy Industry," Sustainability, MDPI, vol. 9(7), pages 1-16, July.
- Shan Yang & Shangkai Zhu & Gao Deng & Huan Li, 2022. "Study on Influencing Factors and Spatial Effects of Carbon Emissions Based on Logarithmic Mean Divisia Index Model: A Case Study of Hunan Province," Sustainability, MDPI, vol. 14(23), pages 1-19, November.
- Kim, Kyunam & Kim, Yeonbae, 2012. "International comparison of industrial CO2 emission trends and the energy efficiency paradox utilizing production-based decomposition," Energy Economics, Elsevier, vol. 34(5), pages 1724-1741.
- Wang, Qiang & Li, Rongrong, 2016. "Drivers for energy consumption: A comparative analysis of China and India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 954-962.
- Wang, Yanqiu & Zhu, Zhiwei & Zhu, Zhaoge & Liu, Zhenbin, 2019. "Analysis of China's energy consumption changing using the Mean Rate of Change Index and the logarithmic mean divisia index," Energy, Elsevier, vol. 167(C), pages 275-282.
- Yuanyuan Gong & Deyong Song, 2015. "Life Cycle Building Carbon Emissions Assessment and Driving Factors Decomposition Analysis Based on LMDI—A Case Study of Wuhan City in China," Sustainability, MDPI, vol. 7(12), pages 1-17, December.
- Kaltenegger, Oliver, 2020. "What drives total real unit energy costs globally? A novel LMDI decomposition approach," Applied Energy, Elsevier, vol. 261(C).
- Ang, B.W. & Huang, H.C. & Mu, A.R., 2009. "Properties and linkages of some index decomposition analysis methods," Energy Policy, Elsevier, vol. 37(11), pages 4624-4632, November.
- Lin, Yuancheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2023. "The carbon reduction potential by improving technical efficiency from energy sources to final services in China: An extended Kaya identity analysis," Energy, Elsevier, vol. 263(PE).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:inecol:v:25:y:2021:i:6:p:1657-1672. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=1088-1980 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.