IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp749-766.html
   My bibliography  Save this article

The potential and usefulness of demand response to provide electricity system services

Author

Listed:
  • Aryandoust, Arsam
  • Lilliestam, Johan

Abstract

The expansion of fluctuating renewable electricity sources creates new challenges for grid operators. One often suggested solution is demand-side response (DR): the adaptation of electricity consumption to generation. Here, we investigate what role DR could play to support system stability through fully remote-controlled (by the grid operator) shifts of individual processes in households and in the commercial and industrial sectors, testing the case of a high-renewables future in Germany. The grid operator is constrained by consumer acceptance of service interruptions, both in size and shift duration, and by technical boundaries. We find that DR has a large potential and is suited for short-term services such as spinning reserve or primary control and for damping residual load gradients. However, its potential is low for longer-term services like secondary/tertiary control or for satisfying residual load during low sun/wind times in a high-renewables future. We find that the potential for DR is not limited by the magnitude of shiftable capacity but by the maximum shift duration and the patterns of switching between positive and negative power demand, which makes DR useful for fast and short-term services but less useful for longer shifts.

Suggested Citation

  • Aryandoust, Arsam & Lilliestam, Johan, 2017. "The potential and usefulness of demand response to provide electricity system services," Applied Energy, Elsevier, vol. 204(C), pages 749-766.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:749-766
    DOI: 10.1016/j.apenergy.2017.07.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917309066
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.07.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stadler, Ingo, 2008. "Power grid balancing of energy systems with high renewable energy penetration by demand response," Utilities Policy, Elsevier, vol. 16(2), pages 90-98, June.
    2. Gils, Hans Christian, 2014. "Assessment of the theoretical demand response potential in Europe," Energy, Elsevier, vol. 67(C), pages 1-18.
    3. Li, Tao & Sethi, Suresh P. & Zhang, Jun, 2014. "Supply diversification with isoelastic demand," International Journal of Production Economics, Elsevier, vol. 157(C), pages 2-6.
    4. Behboodi, Sahand & Chassin, David P. & Crawford, Curran & Djilali, Ned, 2016. "Renewable resources portfolio optimization in the presence of demand response," Applied Energy, Elsevier, vol. 162(C), pages 139-148.
    5. In, Younghwan, 2014. "Fictitious play property of the Nash demand game," Economics Letters, Elsevier, vol. 122(3), pages 408-412.
    6. Steve Heinen & David Elzinga & Seul-Ki Kim & Yuichi Ikeda, 2011. "Impact of Smart Grid Technologies on Peak Load to 2050," IEA Energy Papers 2011/11, OECD Publishing.
    7. Chen, Yongbao & Xu, Peng & Chu, Yiyi & Li, Weilin & Wu, Yuntao & Ni, Lizhou & Bao, Yi & Wang, Kun, 2017. "Short-term electrical load forecasting using the Support Vector Regression (SVR) model to calculate the demand response baseline for office buildings," Applied Energy, Elsevier, vol. 195(C), pages 659-670.
    8. ., 2014. "The investment demand constraint and the FX market," Chapters, in: Money, Banking and the Foreign Exchange Market in Emerging Economies, chapter 6, pages 118-149, Edward Elgar Publishing.
    9. Nistor, Silviu & Wu, Jianzhong & Sooriyabandara, Mahesh & Ekanayake, Janaka, 2015. "Capability of smart appliances to provide reserve services," Applied Energy, Elsevier, vol. 138(C), pages 590-597.
    10. Xu, Xiandong & Jin, Xiaolong & Jia, Hongjie & Yu, Xiaodan & Li, Kang, 2015. "Hierarchical management for integrated community energy systems," Applied Energy, Elsevier, vol. 160(C), pages 231-243.
    11. Staffell, Iain & Pfenninger, Stefan, 2016. "Using bias-corrected reanalysis to simulate current and future wind power output," Energy, Elsevier, vol. 114(C), pages 1224-1239.
    12. Geth, F. & Brijs, T. & Kathan, J. & Driesen, J. & Belmans, R., 2015. "An overview of large-scale stationary electricity storage plants in Europe: Current status and new developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1212-1227.
    13. Katzenstein, Warren & Fertig, Emily & Apt, Jay, 2010. "The variability of interconnected wind plants," Energy Policy, Elsevier, vol. 38(8), pages 4400-4410, August.
    14. ., 2014. "Demand-side incentives," Chapters, in: Confronting the Shadow Economy, chapter 9, pages iii-iii, Edward Elgar Publishing.
    15. ., 2014. "Effective demand and employment," Chapters, in: Post-Keynesian Economics, chapter 5, pages 275-346, Edward Elgar Publishing.
    16. Wang, Jianxiao & Zhong, Haiwang & Lai, Xiaowen & Xia, Qing & Shu, Chang & Kang, Chongqing, 2017. "Distributed real-time demand response based on Lagrangian multiplier optimal selection approach," Applied Energy, Elsevier, vol. 190(C), pages 949-959.
    17. Pfenninger, Stefan & Staffell, Iain, 2016. "Long-term patterns of European PV output using 30 years of validated hourly reanalysis and satellite data," Energy, Elsevier, vol. 114(C), pages 1251-1265.
    18. Gottwalt, Sebastian & Ketter, Wolfgang & Block, Carsten & Collins, John & Weinhardt, Christof, 2011. "Demand side management—A simulation of household behavior under variable prices," Energy Policy, Elsevier, vol. 39(12), pages 8163-8174.
    19. Paulus, Moritz & Borggrefe, Frieder, 2011. "The potential of demand-side management in energy-intensive industries for electricity markets in Germany," Applied Energy, Elsevier, vol. 88(2), pages 432-441, February.
    20. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sivaneasan, Balakrishnan & Kandasamy, Nandha Kumar & Lim, May Lin & Goh, Kwang Ping, 2018. "A new demand response algorithm for solar PV intermittency management," Applied Energy, Elsevier, vol. 218(C), pages 36-45.
    2. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    3. Bomela, Walter & Zlotnik, Anatoly & Li, Jr-Shin, 2018. "A phase model approach for thermostatically controlled load demand response," Applied Energy, Elsevier, vol. 228(C), pages 667-680.
    4. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    5. Dagoumas, Athanasios S. & Koltsaklis, Nikolaos E., 2019. "Review of models for integrating renewable energy in the generation expansion planning," Applied Energy, Elsevier, vol. 242(C), pages 1573-1587.
    6. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Sousa, Joana & Soares, Isabel, 2022. "Demand response potential: An economic analysis for MIBEL and EEX," Energy, Elsevier, vol. 244(PA).
    8. Hungerford, Zoe & Bruce, Anna & MacGill, Iain, 2019. "The value of flexible load in power systems with high renewable energy penetration," Energy, Elsevier, vol. 188(C).
    9. Liu, Diyi & Qi, Suntong & Xu, Tiantong, 2023. "In the post-subsidy era: How to encourage mere consumers to become prosumers when subsidy reduced?," Energy Policy, Elsevier, vol. 174(C).
    10. Ribó-Pérez, David & Heleno, Miguel & Álvarez-Bel, Carlos, 2021. "The flexibility gap: Socioeconomic and geographical factors driving residential flexibility," Energy Policy, Elsevier, vol. 153(C).
    11. Sambasivam, Balasubramanian & Xu, Yuan, 2023. "Reducing solar PV curtailment through demand-side management and economic dispatch in Karnataka, India," Energy Policy, Elsevier, vol. 172(C).
    12. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    13. Francesco Liberati & Alessandro Di Giorgio, 2017. "Economic Model Predictive and Feedback Control of a Smart Grid Prosumer Node," Energies, MDPI, vol. 11(1), pages 1-23, December.
    14. Salvatore Favuzza & Mariano Giuseppe Ippolito & Fabio Massaro & Rossano Musca & Eleonora Riva Sanseverino & Giuseppe Schillaci & Gaetano Zizzo, 2018. "Building Automation and Control Systems and Electrical Distribution Grids: A Study on the Effects of Loads Control Logics on Power Losses and Peaks," Energies, MDPI, vol. 11(3), pages 1-15, March.
    15. Lehmann, Nico & Sloot, Daniel & Ardone, Armin & Fichtner, Wolf, 2022. "Consumer preferences for the design of a demand response quota scheme – Results of a choice experiment in Germany," Energy Policy, Elsevier, vol. 167(C).
    16. Koltsaklis, Nikolaos E. & Dagoumas, Athanasios S., 2018. "State-of-the-art generation expansion planning: A review," Applied Energy, Elsevier, vol. 230(C), pages 563-589.
    17. Li, Pei-Hao & Pye, Steve, 2018. "Assessing the benefits of demand-side flexibility in residential and transport sectors from an integrated energy systems perspective," Applied Energy, Elsevier, vol. 228(C), pages 965-979.
    18. Ribó-Pérez, D. & Carrión, A. & Rodríguez García, J. & Álvarez Bel, C., 2021. "Ex-post evaluation of Interruptible Load programs with a system optimisation perspective," Applied Energy, Elsevier, vol. 303(C).
    19. Ramin, D. & Spinelli, S. & Brusaferri, A., 2018. "Demand-side management via optimal production scheduling in power-intensive industries: The case of metal casting process," Applied Energy, Elsevier, vol. 225(C), pages 622-636.
    20. Satoshi Nakano & Ayu Washizu, 2020. "On the Acceptability of Electricity Demand Side Management by Time of Day," Energies, MDPI, vol. 13(14), pages 1-21, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Héctor Marañón-Ledesma & Asgeir Tomasgard, 2019. "Analyzing Demand Response in a Dynamic Capacity Expansion Model for the European Power Market," Energies, MDPI, vol. 12(15), pages 1-24, August.
    2. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    3. Boßmann, Tobias & Eser, Eike Johannes, 2016. "Model-based assessment of demand-response measures—A comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1637-1656.
    4. Gils, Hans Christian, 2016. "Economic potential for future demand response in Germany – Modeling approach and case study," Applied Energy, Elsevier, vol. 162(C), pages 401-415.
    5. Vijay, Avinash & Fouquet, Nicolas & Staffell, Iain & Hawkes, Adam, 2017. "The value of electricity and reserve services in low carbon electricity systems," Applied Energy, Elsevier, vol. 201(C), pages 111-123.
    6. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    7. Misconel, Steffi & Zöphel, Christoph & Möst, Dominik, 2021. "Assessing the value of demand response in a decarbonized energy system – A large-scale model application," Applied Energy, Elsevier, vol. 299(C).
    8. Fatras, Nicolas & Ma, Zheng & Jørgensen, Bo Nørregaard, 2022. "Process-to-market matrix mapping: A multi-criteria evaluation framework for industrial processes’ electricity market participation feasibility," Applied Energy, Elsevier, vol. 313(C).
    9. Müller, Theresa & Möst, Dominik, 2018. "Demand Response Potential: Available when Needed?," Energy Policy, Elsevier, vol. 115(C), pages 181-198.
    10. Dranka, Géremi Gilson & Ferreira, Paula, 2019. "Review and assessment of the different categories of demand response potentials," Energy, Elsevier, vol. 179(C), pages 280-294.
    11. Alexis Tantet & Marc Stéfanon & Philippe Drobinski & Jordi Badosa & Silvia Concettini & Anna Cretì & Claudia D’Ambrosio & Dimitri Thomopulos & Peter Tankov, 2019. "e 4 clim 1.0: The Energy for a Climate Integrated Model: Description and Application to Italy," Energies, MDPI, vol. 12(22), pages 1-37, November.
    12. Ayman Esmat & Julio Usaola & María Ángeles Moreno, 2018. "Distribution-Level Flexibility Market for Congestion Management," Energies, MDPI, vol. 11(5), pages 1-24, April.
    13. Tómasson, Egill & Söder, Lennart, 2020. "Coordinated optimal strategic demand reserve procurement in multi-area power systems," Applied Energy, Elsevier, vol. 270(C).
    14. Yamaguchi, Yohei & Chen, Chien-fei & Shimoda, Yoshiyuki & Yagita, Yoshie & Iwafune, Yumiko & Ishii, Hideo & Hayashi, Yasuhiro, 2020. "An integrated approach of estimating demand response flexibility of domestic laundry appliances based on household heterogeneity and activities," Energy Policy, Elsevier, vol. 142(C).
    15. Shirizadeh, Behrang & Quirion, Philippe, 2022. "Do multi-sector energy system optimization models need hourly temporal resolution? A case study with an investment and dispatch model applied to France," Applied Energy, Elsevier, vol. 305(C).
    16. Jimenez, I. Sanchez & Ribó-Pérez, D. & Cvetkovic, M. & Kochems, J. & Schimeczek, C. & de Vries, L.J., 2024. "Can an energy only market enable resource adequacy in a decarbonized power system? A co-simulation with two agent-based-models," Applied Energy, Elsevier, vol. 360(C).
    17. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    18. Thomaßen, Georg & Redl, Christian & Bruckner, Thomas, 2022. "Will the energy-only market collapse? On market dynamics in low-carbon electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    19. Radu, David & Berger, Mathias & Dubois, Antoine & Fonteneau, Raphaël & Pandžić, Hrvoje & Dvorkin, Yury & Louveaux, Quentin & Ernst, Damien, 2022. "Assessing the impact of offshore wind siting strategies on the design of the European power system," Applied Energy, Elsevier, vol. 305(C).
    20. Marañón-Ledesma, Hector & Tomasgard, Asgeir, 2019. "Long-Term Electricity Investments Accounting for Demand and Supply Side Flexibility," MPRA Paper 92957, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:749-766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.