IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v304y2021ics030626192101045x.html
   My bibliography  Save this article

Ancillary Services Acquisition Model: Considering market interactions in policy design

Author

Listed:
  • Glismann, Samuel

Abstract

A rapidly changing electricity sector requires adjusted and new ancillary services, which enable the secure and reliable operation of the electricity system. However, assessments and policy advice regarding ancillary services and market design lack methods to evaluate the complex interaction of markets and services. Therefore, this paper contributes an open-source agent-based model to test design options for ancillary services and electricity markets. The Ancillary Services Acquisition Model (ASAM) combines the agent-based modeling framework MESA with the toolbox Python for Power System Analysis (PyPSA). The model provides various design parameters per market and agent-specific strategies as well as detailed clearing algorithms for the day-ahead market, intra-day continuous trading, redispatch, and imbalances. Moreover, ASAM includes numerous policy performance indicators, including a novel price mark-up indicator and novel redispatch performance indicators. A stylized simulation scenario verified and validated the model and addressed a redispatch design question. The results displayed the following implications from order types in redispatch markets with multi-period all-or-none design: (1) The order design provides few risks for market parties, as orders are fully cleared. (2) Large orders may lead to dispatch ramps before and after the delivery period and may cause “ramp-risk” mark-ups as well as additional trading of imbalances on intra-day. (3) All-or-none design in a liquid situation leads to the over-procurement of redispatch by the grid operator, as orders cannot be partially activated. Moreover, it is likely that the grid operator induces imbalances to the system by “incomplete” redispatch activation (i.e. upward and downward redispatch volumes are not equal).

Suggested Citation

  • Glismann, Samuel, 2021. "Ancillary Services Acquisition Model: Considering market interactions in policy design," Applied Energy, Elsevier, vol. 304(C).
  • Handle: RePEc:eee:appene:v:304:y:2021:i:c:s030626192101045x
    DOI: 10.1016/j.apenergy.2021.117697
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192101045X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117697?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Anaya, Karim L. & Pollitt, Michael G., 2020. "Reactive power procurement: A review of current trends," Applied Energy, Elsevier, vol. 270(C).
    2. Greve, Thomas & Teng, Fei & Pollitt, Michael G. & Strbac, Goran, 2018. "A system operator’s utility function for the frequency response market," Applied Energy, Elsevier, vol. 231(C), pages 562-569.
    3. Mehigan, L. & Al Kez, Dlzar & Collins, Seán & Foley, Aoife & Ó’Gallachóir, Brian & Deane, Paul, 2020. "Renewables in the European power system and the impact on system rotational inertia," Energy, Elsevier, vol. 203(C).
    4. Paul Windrum & Giorgio Fagiolo & Alessio Moneta, 2007. "Empirical Validation of Agent-Based Models: Alternatives and Prospects," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 10(2), pages 1-8.
    5. Martin Klein & Ulrich J. Frey & Matthias Reeg, 2019. "Models Within Models – Agent-Based Modelling and Simulation in Energy Systems Analysis," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 22(4), pages 1-6.
    6. Petitet, Marie & Perrot, Marie & Mathieu, Sébastien & Ernst, Damien & Phulpin, Yannick, 2019. "Impact of gate closure time on the efficiency of power systems balancing," Energy Policy, Elsevier, vol. 129(C), pages 562-573.
    7. van der Veen, Reinier A.C. & Abbasy, Alireza & Hakvoort, Rudi A., 2012. "Agent-based analysis of the impact of the imbalance pricing mechanism on market behavior in electricity balancing markets," Energy Economics, Elsevier, vol. 34(4), pages 874-881.
    8. Homa Rashidizadeh-Kermani & Hamid Reza Najafi & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2018. "Optimal Decision-Making Strategy of an Electric Vehicle Aggregator in Short-Term Electricity Markets," Energies, MDPI, vol. 11(9), pages 1-20, September.
    9. Iychettira, Kaveri K. & Hakvoort, Rudi A. & Linares, Pedro & de Jeu, Rob, 2017. "Towards a comprehensive policy for electricity from renewable energy: Designing for social welfare," Applied Energy, Elsevier, vol. 187(C), pages 228-242.
    10. Hosseini, Seyyed Ahmad & Toubeau, Jean-François & De Grève, Zacharie & Vallée, François, 2020. "An advanced day-ahead bidding strategy for wind power producers considering confidence level on the real-time reserve provision," Applied Energy, Elsevier, vol. 280(C).
    11. Dirk Hladik & Christoph Fraunholz & Matthias Kühnbach & Pia Manz & Robert Kunze, 2020. "Insights on Germany’s Future Congestion Management from a Multi-Model Approach," Energies, MDPI, vol. 13(16), pages 1-27, August.
    12. Poplavskaya, Ksenia & de Vries, Laurens, 2019. "Distributed energy resources and the organized balancing market: A symbiosis yet? Case of three European balancing markets," Energy Policy, Elsevier, vol. 126(C), pages 264-276.
    13. Hirth, Lion & Glismann, Samuel, 2018. "Congestion Management: From Physics to Regulatory Instruments," EconStor Preprints 189641, ZBW - Leibniz Information Centre for Economics.
    14. Johnson, Samuel C. & Papageorgiou, Dimitri J. & Mallapragada, Dharik S. & Deetjen, Thomas A. & Rhodes, Joshua D. & Webber, Michael E., 2019. "Evaluating rotational inertia as a component of grid reliability with high penetrations of variable renewable energy," Energy, Elsevier, vol. 180(C), pages 258-271.
    15. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Rottmann, Fabian & Hoffmann, Volker H., 2020. "The role of responsiveness in deployment policies: A quantitative, cross-country assessment using agent-based modelling," Applied Energy, Elsevier, vol. 275(C).
    16. Iychettira, Kaveri K. & Hakvoort, Rudi A. & Linares, Pedro, 2017. "Towards a comprehensive policy for electricity from renewable energy: An approach for policy design," Energy Policy, Elsevier, vol. 106(C), pages 169-182.
    17. Keles, Dogan & Bublitz, Andreas & Zimmermann, Florian & Genoese, Massimo & Fichtner, Wolf, 2016. "Analysis of design options for the electricity market: The German case," Applied Energy, Elsevier, vol. 183(C), pages 884-901.
    18. Herre, Lars & Tomasini, Federica & Paridari, Kaveh & Söder, Lennart & Nordström, Lars, 2020. "Simplified model of integrated paper mill for optimal bidding in energy and reserve markets," Applied Energy, Elsevier, vol. 279(C).
    19. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    20. Ramshani, Mohammad & Li, Xueping & Khojandi, Anahita & Omitaomu, Olufemi, 2020. "An agent-based approach to study the diffusion rate and the effect of policies on joint placement of photovoltaic panels and green roof under climate change uncertainty," Applied Energy, Elsevier, vol. 261(C).
    21. Battula, Swathi & Tesfatsion, Leigh & McDermott, Thomas E., 2020. "An ERCOT test system for market design studies," Applied Energy, Elsevier, vol. 275(C).
    22. Ambrosius, Mirjam & Grimm, Veronika & Kleinert, Thomas & Liers, Frauke & Schmidt, Martin & Zöttl, Gregor, 2020. "Endogenous price zones and investment incentives in electricity markets: An application of multilevel optimization with graph partitioning," Energy Economics, Elsevier, vol. 92(C).
    23. Merten, Michael & Olk, Christopher & Schoeneberger, Ilka & Sauer, Dirk Uwe, 2020. "Bidding strategy for battery storage systems in the secondary control reserve market," Applied Energy, Elsevier, vol. 268(C).
    24. Poplavskaya, Ksenia & Lago, Jesus & de Vries, Laurens, 2020. "Effect of market design on strategic bidding behavior: Model-based analysis of European electricity balancing markets," Applied Energy, Elsevier, vol. 270(C).
    25. Ringkjøb, Hans-Kristian & Haugan, Peter M. & Solbrekke, Ida Marie, 2018. "A review of modelling tools for energy and electricity systems with large shares of variable renewables," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 440-459.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fusco, Andrea & Gioffrè, Domenico & Francesco Castelli, Alessandro & Bovo, Cristian & Martelli, Emanuele, 2023. "A multi-stage stochastic programming model for the unit commitment of conventional and virtual power plants bidding in the day-ahead and ancillary services markets," Applied Energy, Elsevier, vol. 336(C).
    2. Chen, Biyun & Chen, Yanni & Zhou, Hengwang & Bai, Xiaoqing & Li, Bin & Guo, Xiaoxuan, 2023. "A Bi-level gaming programming for regional integrated energy system considering the users’ reliability incentive," Reliability Engineering and System Safety, Elsevier, vol. 229(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Poplavskaya, Ksenia & Lago, Jesus & de Vries, Laurens, 2020. "Effect of market design on strategic bidding behavior: Model-based analysis of European electricity balancing markets," Applied Energy, Elsevier, vol. 270(C).
    2. Savelli, Iacopo & Cornélusse, Bertrand & Giannitrapani, Antonio & Paoletti, Simone & Vicino, Antonio, 2018. "A new approach to electricity market clearing with uniform purchase price and curtailable block orders," Applied Energy, Elsevier, vol. 226(C), pages 618-630.
    3. Poplavskaya, Ksenia & Lago, Jesus & Strömer, Stefan & de Vries, Laurens, 2021. "Making the most of short-term flexibility in the balancing market: Opportunities and challenges of voluntary bids in the new balancing market design," Energy Policy, Elsevier, vol. 158(C).
    4. Niamir, Leila & Filatova, Tatiana & Voinov, Alexey & Bressers, Hans, 2018. "Transition to low-carbon economy: Assessing cumulative impacts of individual behavioral changes," Energy Policy, Elsevier, vol. 118(C), pages 325-345.
    5. Khan, Agha Salman M. & Verzijlbergh, Remco A. & Sakinci, Ozgur Can & De Vries, Laurens J., 2018. "How do demand response and electrical energy storage affect (the need for) a capacity market?," Applied Energy, Elsevier, vol. 214(C), pages 39-62.
    6. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    7. Cartuyvels, Jacques & Bertrand, Gilles & Papavasiliou, Anthony, 2023. "Market Equilibria in Cross-Border Balancing Platforms," LIDAM Discussion Papers CORE 2023009, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    8. Eicke, Anselm & Ruhnau, Oliver & Hirth, Lion, 2021. "Electricity balancing as a market equilibrium," EconStor Preprints 233852, ZBW - Leibniz Information Centre for Economics.
    9. Davi-Arderius, Daniel & Schittekatte, Tim, 2023. "Carbon emissions impacts of operational network constraints: The case of Spain during the Covid-19 crisis," Energy Economics, Elsevier, vol. 128(C).
    10. Li, Wei & Lu, Can & Zhang, Yan-Wu, 2019. "Prospective exploration of future renewable portfolio standard schemes in China via a multi-sector CGE model," Energy Policy, Elsevier, vol. 128(C), pages 45-56.
    11. Okur, Özge & Voulis, Nina & Heijnen, Petra & Lukszo, Zofia, 2019. "Aggregator-mediated demand response: Minimizing imbalances caused by uncertainty of solar generation," Applied Energy, Elsevier, vol. 247(C), pages 426-437.
    12. Serban, Ioan, 2018. "A control strategy for microgrids: Seamless transfer based on a leading inverter with supercapacitor energy storage system," Applied Energy, Elsevier, vol. 221(C), pages 490-507.
    13. Brijs, Tom & De Jonghe, Cedric & Hobbs, Benjamin F. & Belmans, Ronnie, 2017. "Interactions between the design of short-term electricity markets in the CWE region and power system flexibility," Applied Energy, Elsevier, vol. 195(C), pages 36-51.
    14. Wen, Xin & Heinisch, Verena & Müller, Jonas & Sasse, Jan-Philipp & Trutnevyte, Evelina, 2023. "Comparison of statistical and optimization models for projecting future PV installations at a sub-national scale," Energy, Elsevier, vol. 285(C).
    15. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    16. Lago, Jesus & Poplavskaya, Ksenia & Suryanarayana, Gowri & De Schutter, Bart, 2021. "A market framework for grid balancing support through imbalances trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    17. Rodríguez-Huerta, Edgar & Rosas-Casals, Martí & Sorman, Alevgul H., 2017. "A societal metabolism approach to job creation and renewable energy transitions in Catalonia," Energy Policy, Elsevier, vol. 108(C), pages 551-564.
    18. Nguyen, Ly & Kinnucan, Henry W., 2019. "The US solar panel anti-dumping duties versus uniform tariff," Energy Policy, Elsevier, vol. 127(C), pages 523-532.
    19. Vazquez, Miguel & Hallack, Michelle, 2018. "The role of regulatory learning in energy transition: The case of solar PV in Brazil," Energy Policy, Elsevier, vol. 114(C), pages 465-481.
    20. Anatolitis, Vasilios & Welisch, Marijke, 2017. "Putting renewable energy auctions into action – An agent-based model of onshore wind power auctions in Germany," Energy Policy, Elsevier, vol. 110(C), pages 394-402.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:304:y:2021:i:c:s030626192101045x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.