IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v275y2020ics0306261920306942.html
   My bibliography  Save this article

An ERCOT test system for market design studies

Author

Listed:
  • Battula, Swathi
  • Tesfatsion, Leigh
  • McDermott, Thomas E.

Abstract

An open source test system is developed that permits the dynamic modeling of centrally-managed wholesale power markets operating over high-voltage transmission grids. In default mode, the test system models basic operations in the Electric Reliability Council of Texas (ERCOT): namely, centrally-managed day-ahead and real-time markets operating over successive days, with congestion handled by locational marginal pricing. These basic operational features characterize all seven U.S. energy regions organized as centrally-managed wholesale power markets. Modeled participants include dispatchable generators, load-serving entities, and non-dispatchable generation such as unfirmed wind and solar power. Users can configure a broad variety of parameters to study basic market and grid features under alternative system conditions. Users can also easily extend the test system’s Java/Python software classes to study modified or newly envisioned market and grid features. Finally, the test system is integrated with a high-level simulation framework that permits it to function as a software component within larger systems, such as multi-country systems or integrated transmission and distribution systems. Detailed test cases with 8-bus and 200-bus transmission grids are reported to illustrate these test system capabilities.

Suggested Citation

  • Battula, Swathi & Tesfatsion, Leigh & McDermott, Thomas E., 2020. "An ERCOT test system for market design studies," Applied Energy, Elsevier, vol. 275(C).
  • Handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920306942
    DOI: 10.1016/j.apenergy.2020.115182
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920306942
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115182?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Junjie Sun & Leigh Tesfatsion, 2007. "Dynamic Testing of Wholesale Power Market Designs: An Open-Source Agent-Based Framework," Computational Economics, Springer;Society for Computational Economics, vol. 30(3), pages 291-327, October.
    2. Nguyen, Hieu Trung & Battula, Swathi & Takkala, Rohit Reddy & Wang, Zhaoyu & Tesfatsion, Leigh, 2019. "An integrated transmission and distribution test system for evaluation of transactive energy designs," Applied Energy, Elsevier, vol. 240(C), pages 666-679.
    3. David P. Chassin & Jason C. Fuller & Ned Djilali, 2014. "GridLAB-D: An Agent-Based Simulation Framework for Smart Grids," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-12, June.
    4. Stephen Johnson, 1967. "Hierarchical clustering schemes," Psychometrika, Springer;The Psychometric Society, vol. 32(3), pages 241-254, September.
    5. Weidlich, Anke & Veit, Daniel, 2008. "A critical survey of agent-based wholesale electricity market models," Energy Economics, Elsevier, vol. 30(4), pages 1728-1759, July.
    6. Liu, Haifeng & Tesfatsion, Leigh & Chowdhury, Ali A., 2009. "Derivation of Locational Marginal Prices for Restructured Wholesale Power Markets," ISU General Staff Papers 200901010800001390, Iowa State University, Department of Economics.
    7. Krishnamurthy, Dheepak & Li, Wanning & Tesfatsion, Leigh, 2016. "An 8-Zone Test System Based on ISO New England Data: Development and Application," ISU General Staff Papers 201601010800001449, Iowa State University, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Glismann, Samuel, 2021. "Ancillary Services Acquisition Model: Considering market interactions in policy design," Applied Energy, Elsevier, vol. 304(C).
    2. Antonello Cammarano & Vincenzo Varriale & Francesca Michelino & Mauro Caputo, 2022. "Open and Crowd-Based Platforms: Impact on Organizational and Market Performance," Sustainability, MDPI, vol. 14(4), pages 1-26, February.
    3. Cheng, Rui & Tesfatsion, Leigh & Wang, Zhaoyu, 2021. "A Multiperiod Consensus-Based Transactive Energy System for Unbalanced Distribution Networks," ISU General Staff Papers 202104230700001126, Iowa State University, Department of Economics.
    4. Tesfatsion, Leigh, 2022. "Economics of Grid-Supported Electric Power Markets: A Fundamental Reconsideration," ISU General Staff Papers 202209141325510000, Iowa State University, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Albert Banal-Estañol & Augusto Rupérez-Micola, 2010. "Are agent-based simulations robust? The wholesale electricity trading case," Economics Working Papers 1214, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Young, David & Poletti, Stephen & Browne, Oliver, 2014. "Can agent-based models forecast spot prices in electricity markets? Evidence from the New Zealand electricity market," Energy Economics, Elsevier, vol. 45(C), pages 419-434.
    3. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    4. Jean-Luc Gaffard & Mauro Napoletano, 2012. "Agent-based models and economic policy," Post-Print hal-03461120, HAL.
    5. Somani, Abhishek, 2012. "Financial risk management and market performance in restructured electric power markets: Theoretical and agent-based test bed studies," ISU General Staff Papers 201201010800003479, Iowa State University, Department of Economics.
    6. Li, Hongyan & Tesfatsion, Leigh, 2012. "Co-learning patterns as emergent market phenomena: An electricity market illustration," Journal of Economic Behavior & Organization, Elsevier, vol. 82(2), pages 395-419.
    7. Vijayanarasimha Hindupur Pakka & Richard Mark Rylatt, 2016. "Design and Analysis of Electrical Distribution Networks and Balancing Markets in the UK: A New Framework with Applications," Energies, MDPI, vol. 9(2), pages 1-20, February.
    8. Mauro Napoletano, 2018. "A Short Walk on the Wild Side: Agent-Based Models and their Implications for Macroeconomic Analysis," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(3), pages 257-281.
    9. Gaivoronskaia, E. & Tsyplakov, A., 2018. "Using a Modified Erev-Roth Algorithm in an Agent-Based Electricity Market Model," Journal of the New Economic Association, New Economic Association, vol. 39(3), pages 55-83.
    10. repec:spo:wpmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    11. repec:spo:wpmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    12. repec:hal:spmain:info:hdl:2441/53r60a8s3kup1vc9l564igg8g is not listed on IDEAS
    13. Dina A. Zaki & Mohamed Hamdy, 2022. "A Review of Electricity Tariffs and Enabling Solutions for Optimal Energy Management," Energies, MDPI, vol. 15(22), pages 1-17, November.
    14. repec:hal:spmain:info:hdl:2441/2qdhj5485p93jrnf08s1meeap9 is not listed on IDEAS
    15. Anna Kowalska-Pyzalska & Katarzyna Maciejowska & Katarzyna Sznajd-Weron & Rafal Weron, 2013. "Going green: Agent-based modeling of the diffusion of dynamic electricity tariffs," HSC Research Reports HSC/13/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
    16. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    17. Salehizadeh, Mohammad Reza & Soltaniyan, Salman, 2016. "Application of fuzzy Q-learning for electricity market modeling by considering renewable power penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1172-1181.
    18. Mahvi, M. & Ardehali, M.M., 2011. "Optimal bidding strategy in a competitive electricity market based on agent-based approach and numerical sensitivity analysis," Energy, Elsevier, vol. 36(11), pages 6367-6374.
    19. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    20. Li, Hongyan & Sun, Junjie & Tesfatsion, Leigh S., 2009. "Separation and Volatility of Locational Marginal Prices in Restructured Wholesale Power Markets," Staff General Research Papers Archive 13075, Iowa State University, Department of Economics.
    21. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    22. repec:spo:wpmain:info:hdl:2441/2qdhj5485p93jrnf08s1meeap9 is not listed on IDEAS
    23. Banal-Estañol, Albert & Rupérez Micola, Augusto, 2011. "Behavioural simulations in spot electricity markets," European Journal of Operational Research, Elsevier, vol. 214(1), pages 147-159, October.
    24. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    25. Block, C. & Collins, J. & Ketter, W. & Weinhardt, C., 2009. "A Multi-Agent Energy Trading Competition," ERIM Report Series Research in Management ERS-2009-054-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    26. Alexander J. M. Kell & Matthew Forshaw & A. Stephen McGough, 2019. "ElecSim: Monte-Carlo Open-Source Agent-Based Model to Inform Policy for Long-Term Electricity Planning," Papers 1911.01203, arXiv.org.
    27. Li, Gong & Shi, Jing, 2012. "Agent-based modeling for trading wind power with uncertainty in the day-ahead wholesale electricity markets of single-sided auctions," Applied Energy, Elsevier, vol. 99(C), pages 13-22.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:275:y:2020:i:c:s0306261920306942. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.