IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v300y2021ics030626192100814x.html
   My bibliography  Save this article

Hubs and clusters approach to unlock the development of carbon capture and storage – Case study in Spain

Author

Listed:
  • Sun, Xiaolong
  • Alcalde, Juan
  • Bakhtbidar, Mahdi
  • Elío, Javier
  • Vilarrasa, Víctor
  • Canal, Jacobo
  • Ballesteros, Julio
  • Heinemann, Niklas
  • Haszeldine, Stuart
  • Cavanagh, Andrew
  • Vega-Maza, David
  • Rubiera, Fernando
  • Martínez-Orio, Roberto
  • Johnson, Gareth
  • Carbonell, Ramon
  • Marzan, Ignacio
  • Travé, Anna
  • Gomez-Rivas, Enrique

Abstract

Many countries have assigned an indispensable role for carbon capture and storage (CCS) in their national climate change mitigation pathways. However, CCS deployment has stalled in most countries with only limited commercial projects realised mainly in hydrocarbon-rich countries for enhanced oil recovery. If the Paris Agreement is to be met, then this progress must be replicated widely, including hydrocarbon-limited countries. In this study, we present a novel source-to-sink assessment methodology based on a hubs and clusters approach to identify favourable regions for CCS deployment and attract renewed public and political interest in viable deployment pathways. Here, we apply this methodology to Spain, where fifteen emission hubs from both the power and the hard-to-abate industrial sectors are identified as potential CO2 sources. A priority storage structure and two reserves for each hub are selected based on screening and ranking processes using a multi-criteria decision-making method. The priority source-to-sink clusters are identified indicating four potential development regions, with the North-Western and North-Eastern Spain recognised as priority regions due to resilience provided by different types of CO2 sources and geological structures. Up to 68.7 Mt CO2 per year, comprising around 21% of Spanish emissions can be connected to clusters linked to feasible storage. CCS, especially in the hard-to-abate sector, and in combination with other low-carbon energies (e.g., blue hydrogen and bioenergy), remains a significant and unavoidable contributor to the Paris Agreement’s mid-century net-zero target. This study shows that the hubs and clusters approach can facilitate CCS deployment in Spain and other hydrocarbon-limited countries.

Suggested Citation

  • Sun, Xiaolong & Alcalde, Juan & Bakhtbidar, Mahdi & Elío, Javier & Vilarrasa, Víctor & Canal, Jacobo & Ballesteros, Julio & Heinemann, Niklas & Haszeldine, Stuart & Cavanagh, Andrew & Vega-Maza, David, 2021. "Hubs and clusters approach to unlock the development of carbon capture and storage – Case study in Spain," Applied Energy, Elsevier, vol. 300(C).
  • Handle: RePEc:eee:appene:v:300:y:2021:i:c:s030626192100814x
    DOI: 10.1016/j.apenergy.2021.117418
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192100814X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.117418?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    2. Costa, Isabella & Rochedo, Pedro & Costa, Daniele & Ferreira, Paula & Araújo, Madalena & Schaeffer, Roberto & Szklo, Alexandre, 2019. "Placing hubs in CO2 pipelines: An application to industrial CO2 emissions in the Iberian Peninsula," Applied Energy, Elsevier, vol. 236(C), pages 22-31.
    3. Gils, Hans Christian & Simon, Sonja, 2017. "Carbon neutral archipelago – 100% renewable energy supply for the Canary Islands," Applied Energy, Elsevier, vol. 188(C), pages 342-355.
    4. Kumar, Abhishek & Sah, Bikash & Singh, Arvind R. & Deng, Yan & He, Xiangning & Kumar, Praveen & Bansal, R.C., 2017. "A review of multi criteria decision making (MCDM) towards sustainable renewable energy development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 596-609.
    5. Duan, Hong-Bo & Fan, Ying & Zhu, Lei, 2013. "What’s the most cost-effective policy of CO2 targeted reduction: An application of aggregated economic technological model with CCS?," Applied Energy, Elsevier, vol. 112(C), pages 866-875.
    6. Udayan Singh & Erica M. Loudermilk & Lisa M. Colosi, 2021. "Accounting for the role of transport and storage infrastructure costs in carbon negative bioenergy deployment," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(1), pages 144-164, February.
    7. Selosse, Sandrine & Ricci, Olivia, 2014. "Achieving negative emissions with BECCS (bioenergy with carbon capture and storage) in the power sector: New insights from the TIAM-FR (TIMES Integrated Assessment Model France) model," Energy, Elsevier, vol. 76(C), pages 967-975.
    8. Viebahn, Peter & Daniel, Vallentin & Samuel, Höller, 2012. "Integrated assessment of carbon capture and storage (CCS) in the German power sector and comparison with the deployment of renewable energies," Applied Energy, Elsevier, vol. 97(C), pages 238-248.
    9. Nikolaidis, Pavlos & Poullikkas, Andreas, 2017. "A comparative overview of hydrogen production processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 597-611.
    10. Davis, Steven J & Lewis, Nathan S. & Shaner, Matthew & Aggarwal, Sonia & Arent, Doug & Azevedo, Inês & Benson, Sally & Bradley, Thomas & Brouwer, Jack & Chiang, Yet-Ming & Clack, Christopher T.M. & Co, 2018. "Net-Zero Emissions Energy Systems," Institute of Transportation Studies, Working Paper Series qt7qv6q35r, Institute of Transportation Studies, UC Davis.
    11. Uche-Soria, Manuel & Rodríguez-Monroy, Carlos, 2020. "Energy planning and its relationship to energy poverty in decision making. A first approach for the Canary Islands," Energy Policy, Elsevier, vol. 140(C).
    12. Vivian Scott & Stuart Gilfillan & Nils Markusson & Hannah Chalmers & R. Stuart Haszeldine, 2013. "Last chance for carbon capture and storage," Nature Climate Change, Nature, vol. 3(2), pages 105-111, February.
    13. Sonja Renssen, 2020. "The hydrogen solution?," Nature Climate Change, Nature, vol. 10(9), pages 799-801, September.
    14. Leung, Dennis Y.C. & Caramanna, Giorgio & Maroto-Valer, M. Mercedes, 2014. "An overview of current status of carbon dioxide capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 426-443.
    15. Stefania Osk Gardarsdottir & Edoardo De Lena & Matteo Romano & Simon Roussanaly & Mari Voldsund & José-Francisco Pérez-Calvo & David Berstad & Chao Fu & Rahul Anantharaman & Daniel Sutter & Matteo Gaz, 2019. "Comparison of Technologies for CO 2 Capture from Cement Production—Part 2: Cost Analysis," Energies, MDPI, vol. 12(3), pages 1-20, February.
    16. Mouli-Castillo, Julien & Heinemann, Niklas & Edlmann, Katriona, 2021. "Mapping geological hydrogen storage capacity and regional heating demands: An applied UK case study," Applied Energy, Elsevier, vol. 283(C).
    17. Mari Voldsund & Stefania Osk Gardarsdottir & Edoardo De Lena & José-Francisco Pérez-Calvo & Armin Jamali & David Berstad & Chao Fu & Matteo Romano & Simon Roussanaly & Rahul Anantharaman & Helmut Hopp, 2019. "Comparison of Technologies for CO 2 Capture from Cement Production—Part 1: Technical Evaluation," Energies, MDPI, vol. 12(3), pages 1-33, February.
    18. Juan Alcalde & Stephanie Flude & Mark Wilkinson & Gareth Johnson & Katriona Edlmann & Clare E. Bond & Vivian Scott & Stuart M. V. Gilfillan & Xènia Ogaya & R. Stuart Haszeldine, 2018. "Estimating geological CO2 storage security to deliver on climate mitigation," Nature Communications, Nature, vol. 9(1), pages 1-13, December.
    19. Mazloomi, Kaveh & Gomes, Chandima, 2012. "Hydrogen as an energy carrier: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3024-3033.
    20. R. J. Stewart & V. Scott & R. S. Haszeldine & D. Ainger & S. Argent, 2014. "The feasibility of a European‐wide integrated CO 2 transport network," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 4(4), pages 481-494, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yu, Xianyu & Hu, Yuezhi & Zhou, Dequn & Wang, Qunwei & Sang, Xiuzhi & Huang, Kai, 2023. "Carbon emission reduction analysis for cloud computing industry: Can carbon emissions trading and technology innovation help?," Energy Economics, Elsevier, vol. 125(C).
    2. Callas, Catherine & Saltzer, Sarah D. & Steve Davis, J. & Hashemi, Sam S. & Kovscek, Anthony R. & Okoroafor, Esuru R. & Wen, Gege & Zoback, Mark D. & Benson, Sally M., 2022. "Criteria and workflow for selecting depleted hydrocarbon reservoirs for carbon storage," Applied Energy, Elsevier, vol. 324(C).
    3. Ruhaimi, A.H. & Hitam, C.N.C. & Aziz, M.A.A. & Hamid, N.H.A. & Setiabudi, H.D. & Teh, L.P., 2022. "The role of surface and structural functionalisation on graphene adsorbent nanomaterial for CO2 adsorption application: Recent progress and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Gunawan, Tubagus Aryandi & Luo, Hongxi & Greig, Chris & Larson, Eric, 2024. "Shared CO₂ capture, transport, and storage for decarbonizing industrial clusters," Applied Energy, Elsevier, vol. 359(C).
    5. Tubagus Aryandi Gunawan & Lilianna Gittoes & Cecelia Isaac & Chris Greig & Eric Larson, 2024. "Design Insights for Industrial CO2 Capture, Transport, and Storage Systems," Papers 2403.17162, arXiv.org.
    6. Luis Yagüe & José I. Linares & Eva Arenas & José C. Romero, 2024. "Levelized Cost of Biohydrogen from Steam Reforming of Biomethane with Carbon Capture and Storage (Golden Hydrogen)—Application to Spain," Energies, MDPI, vol. 17(5), pages 1-18, February.
    7. Fernández-González, Raquel & Puime-Guillén, Félix & Panait, Mirela, 2022. "Multilevel governance, PV solar energy, and entrepreneurship: the generation of green hydrogen as a fuel of renewable origin," Utilities Policy, Elsevier, vol. 79(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    2. Quarton, Christopher J. & Samsatli, Sheila, 2020. "The value of hydrogen and carbon capture, storage and utilisation in decarbonising energy: Insights from integrated value chain optimisation," Applied Energy, Elsevier, vol. 257(C).
    3. Peter Viebahn & Emile J. L. Chappin, 2018. "Scrutinising the Gap between the Expected and Actual Deployment of Carbon Capture and Storage—A Bibliometric Analysis," Energies, MDPI, vol. 11(9), pages 1-45, September.
    4. Njomza Ibrahimi & Alemayehu Gebremedhin & Alketa Sahiti, 2019. "Achieving a Flexible and Sustainable Energy System: The Case of Kosovo," Energies, MDPI, vol. 12(24), pages 1-22, December.
    5. Rissman, Jeffrey & Bataille, Chris & Masanet, Eric & Aden, Nate & Morrow, William R. & Zhou, Nan & Elliott, Neal & Dell, Rebecca & Heeren, Niko & Huckestein, Brigitta & Cresko, Joe & Miller, Sabbie A., 2020. "Technologies and policies to decarbonize global industry: Review and assessment of mitigation drivers through 2070," Applied Energy, Elsevier, vol. 266(C).
    6. Navas-Anguita, Zaira & García-Gusano, Diego & Iribarren, Diego, 2019. "A review of techno-economic data for road transportation fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 11-26.
    7. Aasadnia, Majid & Mehrpooya, Mehdi, 2018. "Large-scale liquid hydrogen production methods and approaches: A review," Applied Energy, Elsevier, vol. 212(C), pages 57-83.
    8. Höller, Samuel & Viebahn, Peter, 2016. "Facing the uncertainty of CO2 storage capacity in China by developing different storage scenarios," Energy Policy, Elsevier, vol. 89(C), pages 64-73.
    9. Shen, Peiliang & Jiang, Yi & Zhang, Yangyang & Liu, Songhui & Xuan, Dongxing & Lu, Jianxin & Zhang, Shipeng & Poon, Chi Sun, 2023. "Production of aragonite whiskers by carbonation of fine recycled concrete wastes: An alternative pathway for efficient CO2 sequestration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    10. Rosa, Lorenzo & Sanchez, Daniel L. & Realmonte, Giulia & Baldocchi, Dennis & D'Odorico, Paolo, 2021. "The water footprint of carbon capture and storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Montazerinejad, H. & Eicker, U., 2022. "Recent development of heat and power generation using renewable fuels: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    12. Ouyang, Mingwei & Cao, Yan, 2023. "Utilizations of reaction exothermic heat to compensate the cost of the permanent CO2 sequestration through the geological mineral CO2 carbonation," Energy, Elsevier, vol. 284(C).
    13. Oshiro, Ken & Fujimori, Shinichiro, 2022. "Role of hydrogen-based energy carriers as an alternative option to reduce residual emissions associated with mid-century decarbonization goals," Applied Energy, Elsevier, vol. 313(C).
    14. Ajanovic, Amela & Sayer, Marlene & Haas, Reinhard, 2024. "On the future relevance of green hydrogen in Europe," Applied Energy, Elsevier, vol. 358(C).
    15. Sonja Simon & Tobias Naegler & Hans Christian Gils, 2018. "Transformation towards a Renewable Energy System in Brazil and Mexico—Technological and Structural Options for Latin America," Energies, MDPI, vol. 11(4), pages 1-26, April.
    16. Grubert, E. & Zacarias, M., 2022. "Paradigm shifts for environmental assessment of decarbonizing energy systems: Emerging dominance of embodied impacts and design-oriented decision support needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    17. Lopes, J.V.M. & Bresciani, A.E. & Carvalho, K.M. & Kulay, L.A. & Alves, R.M.B., 2021. "Multi-criteria decision approach to select carbon dioxide and hydrogen sources as potential raw materials for the production of chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Seunghyun Cheon & Manhee Byun & Dongjun Lim & Hyunjun Lee & Hankwon Lim, 2021. "Parametric Study for Thermal and Catalytic Methane Pyrolysis for Hydrogen Production: Techno-Economic and Scenario Analysis," Energies, MDPI, vol. 14(19), pages 1-19, September.
    19. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    20. Tarkowski, R. & Uliasz-Misiak, B., 2022. "Towards underground hydrogen storage: A review of barriers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:300:y:2021:i:c:s030626192100814x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.