IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v112y2013icp185-193.html
   My bibliography  Save this article

Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm

Author

Listed:
  • Jiang, Lian Lian
  • Maskell, Douglas L.
  • Patra, Jagdish C.

Abstract

A number of different analytical and numerical methods have previously been proposed to estimate solar cell/module parameters. For a single diode model, the parameters include the photocurrent, the saturation current, the parasitic series and shunt resistances, and the ideality factor. Among the proposed optimization techniques, the differential evolution (DE) based method besides its computational advantage, provides better accuracy compared to other methods. However, it is not an easy task to determine the control parameters for the DE algorithm. This paper presents an improved adaptive DE (IADE) based optimization technique. New formulas for the scaling factor and crossover rate are proposed. The proposed IADE algorithm uses a simple structure based on the feedback of fitness value in the evolutionary process. It provides better performance for estimation of the solar cell and module parameter values than other popular optimization methods such as particle swarm optimization, genetic algorithm, conventional DE, simulated annealing (SA), and a recently proposed analytical method. Comparisons with existing methods for solar cell and module parameter estimation are presented using both synthetic and experimental data under various environmental conditions. The proposed scheme offers higher accuracy, and also eliminates the need for users to manually tune the control parameters of DE algorithm.

Suggested Citation

  • Jiang, Lian Lian & Maskell, Douglas L. & Patra, Jagdish C., 2013. "Parameter estimation of solar cells and modules using an improved adaptive differential evolution algorithm," Applied Energy, Elsevier, vol. 112(C), pages 185-193.
  • Handle: RePEc:eee:appene:v:112:y:2013:i:c:p:185-193
    DOI: 10.1016/j.apenergy.2013.06.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913005114
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.06.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Anzi, Fawaz S. & Allahverdi, Ali, 2007. "A self-adaptive differential evolution heuristic for two-stage assembly scheduling problem to minimize maximum lateness with setup times," European Journal of Operational Research, Elsevier, vol. 182(1), pages 80-94, October.
    2. Chen, Yifeng & Wang, Xuemeng & Li, Da & Hong, Ruijiang & Shen, Hui, 2011. "Parameters extraction from commercial solar cells I-V characteristics and shunt analysis," Applied Energy, Elsevier, vol. 88(6), pages 2239-2244, June.
    3. Patra, Jagdish C. & Maskell, Douglas L., 2012. "Modeling of multi-junction solar cells for estimation of EQE under influence of charged particles using artificial neural networks," Renewable Energy, Elsevier, vol. 44(C), pages 7-16.
    4. Ishaque, Kashif & Salam, Zainal & Mekhilef, Saad & Shamsudin, Amir, 2012. "Parameter extraction of solar photovoltaic modules using penalty-based differential evolution," Applied Energy, Elsevier, vol. 99(C), pages 297-308.
    5. AlHajri, M.F. & El-Naggar, K.M. & AlRashidi, M.R. & Al-Othman, A.K., 2012. "Optimal extraction of solar cell parameters using pattern search," Renewable Energy, Elsevier, vol. 44(C), pages 238-245.
    6. Asim, Nilofar & Sopian, Kamaruzzaman & Ahmadi, Shideh & Saeedfar, Kasra & Alghoul, M.A. & Saadatian, Omidreza & Zaidi, Saleem H., 2012. "A review on the role of materials science in solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5834-5847.
    7. Sandrolini, L. & Artioli, M. & Reggiani, U., 2010. "Numerical method for the extraction of photovoltaic module double-diode model parameters through cluster analysis," Applied Energy, Elsevier, vol. 87(2), pages 442-451, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Askarzadeh, Alireza & Rezazadeh, Alireza, 2013. "Artificial bee swarm optimization algorithm for parameters identification of solar cell models," Applied Energy, Elsevier, vol. 102(C), pages 943-949.
    2. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    3. Chin, Vun Jack & Salam, Zainal, 2019. "A New Three-point-based Approach for the Parameter Extraction of Photovoltaic Cells," Applied Energy, Elsevier, vol. 237(C), pages 519-533.
    4. Słowik, Adam & Cpałka, Krzysztof & Xue, Yu & Hapka, Aneta, 2024. "An efficient approach to parameter extraction of photovoltaic cell models using a new population-based algorithm," Applied Energy, Elsevier, vol. 364(C).
    5. Muangkote, Nipotepat & Sunat, Khamron & Chiewchanwattana, Sirapat & Kaiwinit, Sirilak, 2019. "An advanced onlooker-ranking-based adaptive differential evolution to extract the parameters of solar cell models," Renewable Energy, Elsevier, vol. 134(C), pages 1129-1147.
    6. Lo Brano, Valerio & Ciulla, Giuseppina, 2013. "An efficient analytical approach for obtaining a five parameters model of photovoltaic modules using only reference data," Applied Energy, Elsevier, vol. 111(C), pages 894-903.
    7. Khanna, Vandana & Das, B.K. & Bisht, Dinesh & Vandana, & Singh, P.K., 2015. "A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm," Renewable Energy, Elsevier, vol. 78(C), pages 105-113.
    8. Tong, Nhan Thanh & Pora, Wanchalerm, 2016. "A parameter extraction technique exploiting intrinsic properties of solar cells," Applied Energy, Elsevier, vol. 176(C), pages 104-115.
    9. Chin, Vun Jack & Salam, Zainal & Ishaque, Kashif, 2015. "Cell modelling and model parameters estimation techniques for photovoltaic simulator application: A review," Applied Energy, Elsevier, vol. 154(C), pages 500-519.
    10. Jena, Debashisha & Ramana, Vanjari Venkata, 2015. "Modeling of photovoltaic system for uniform and non-uniform irradiance: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 400-417.
    11. Omnia S. Elazab & Hany M. Hasanien & Ibrahim Alsaidan & Almoataz Y. Abdelaziz & S. M. Muyeen, 2020. "Parameter Estimation of Three Diode Photovoltaic Model Using Grasshopper Optimization Algorithm," Energies, MDPI, vol. 13(2), pages 1-15, January.
    12. Samuel R. Fahim & Hany M. Hasanien & Rania A. Turky & Shady H. E. Abdel Aleem & Martin Ćalasan, 2022. "A Comprehensive Review of Photovoltaic Modules Models and Algorithms Used in Parameter Extraction," Energies, MDPI, vol. 15(23), pages 1-56, November.
    13. Hasan, M.A. & Parida, S.K., 2016. "An overview of solar photovoltaic panel modeling based on analytical and experimental viewpoint," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 75-83.
    14. Muhammad Ali Mughal & Qishuang Ma & Chunyan Xiao, 2017. "Photovoltaic Cell Parameter Estimation Using Hybrid Particle Swarm Optimization and Simulated Annealing," Energies, MDPI, vol. 10(8), pages 1-14, August.
    15. Chen, Zhicong & Wu, Lijun & Lin, Peijie & Wu, Yue & Cheng, Shuying, 2016. "Parameters identification of photovoltaic models using hybrid adaptive Nelder-Mead simplex algorithm based on eagle strategy," Applied Energy, Elsevier, vol. 182(C), pages 47-57.
    16. Abbassi, Rabeh & Abbassi, Abdelkader & Jemli, Mohamed & Chebbi, Souad, 2018. "Identification of unknown parameters of solar cell models: A comprehensive overview of available approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 453-474.
    17. Chen, Xu & Yu, Kunjie & Du, Wenli & Zhao, Wenxiang & Liu, Guohai, 2016. "Parameters identification of solar cell models using generalized oppositional teaching learning based optimization," Energy, Elsevier, vol. 99(C), pages 170-180.
    18. Nunes, H.G.G. & Pombo, J.A.N. & Mariano, S.J.P.S. & Calado, M.R.A. & Felippe de Souza, J.A.M., 2018. "A new high performance method for determining the parameters of PV cells and modules based on guaranteed convergence particle swarm optimization," Applied Energy, Elsevier, vol. 211(C), pages 774-791.
    19. Ghani, F. & Rosengarten, G. & Duke, M. & Carson, J.K., 2014. "The numerical calculation of single-diode solar-cell modelling parameters," Renewable Energy, Elsevier, vol. 72(C), pages 105-112.
    20. Bastidas-Rodriguez, J.D. & Petrone, G. & Ramos-Paja, C.A. & Spagnuolo, G., 2017. "A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 38-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:112:y:2013:i:c:p:185-193. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.