IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v293y2021ics0306261921003469.html
   My bibliography  Save this article

Energy-saving potential evaluation for primary schools with occupant-centric controls

Author

Listed:
  • Ye, Yunyang
  • Chen, Yan
  • Zhang, Jian
  • Pang, Zhihong
  • O’Neill, Zheng
  • Dong, Bing
  • Cheng, Hwakong

Abstract

Recent studies demonstrated that there is significant energy-saving potential for primary schools, which heating, ventilation, and air-conditioning (HVAC) systems with occupant-centric control (OCC) is an excellent candidate to save energy. However, such an energy impact has yet to be evaluated for different climate zones as well as different energy code versions, but is critical for technology transfer and deployment. Therefore, this paper conducts comprehensive evaluation on the energy-saving potentials for the primary schools with two advanced OCC strategies: presence-based and counting-based. Ninety-six building energy models with stochastic behavior of occupants are developed and simulated, which consist of two building energy code versions, 16 climate zones, and baseline case (without OCC) and two advanced cases (with OCC). To evaluate the energy saving potentials for OCC, primary schools in the U.S. are used as an example. The results show that there is significant energy-saving potential for primary schools by considering OCC strategies, especially the counting-based case. The energy-saving potential is up to 10.2% for presence-based OCC and 12.41% for counting-based OCC. Furthermore, both climate and code version have a significant impact on energy savings from OCC strategies. The energy-saving potentials vary from 1.79% to 12.41% for different climates and code versions. This evaluation can also contribute to quantify the nationwide energy saving potential for other countries.

Suggested Citation

  • Ye, Yunyang & Chen, Yan & Zhang, Jian & Pang, Zhihong & O’Neill, Zheng & Dong, Bing & Cheng, Hwakong, 2021. "Energy-saving potential evaluation for primary schools with occupant-centric controls," Applied Energy, Elsevier, vol. 293(C).
  • Handle: RePEc:eee:appene:v:293:y:2021:i:c:s0306261921003469
    DOI: 10.1016/j.apenergy.2021.116854
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921003469
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116854?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goyal, Siddharth & Ingley, Herbert A. & Barooah, Prabir, 2013. "Occupancy-based zone-climate control for energy-efficient buildings: Complexity vs. performance," Applied Energy, Elsevier, vol. 106(C), pages 209-221.
    2. Pang, Zhihong & Chen, Yan & Zhang, Jian & O'Neill, Zheng & Cheng, Hwakong & Dong, Bing, 2020. "Nationwide HVAC energy-saving potential quantification for office buildings with occupant-centric controls in various climates," Applied Energy, Elsevier, vol. 279(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    2. Perwez, Usama & Yamaguchi, Yohei & Ma, Tao & Dai, Yanjun & Shimoda, Yoshiyuki, 2022. "Multi-scale GIS-synthetic hybrid approach for the development of commercial building stock energy model," Applied Energy, Elsevier, vol. 323(C).
    3. Li, Bingxu & Wu, Bingjie & Peng, Yelun & Cai, Wenjian, 2022. "Tube-based robust model predictive control of multi-zone demand-controlled ventilation systems for energy saving and indoor air quality," Applied Energy, Elsevier, vol. 307(C).
    4. Iñigo Rodríguez-Vidal & Alexander Martín-Garín & Francisco González-Quintial & José Miguel Rico-Martínez & Rufino J. Hernández-Minguillón & Jorge Otaegi, 2022. "Response to the COVID-19 Pandemic in Classrooms at the University of the Basque Country through a User-Informed Natural Ventilation Demonstrator," IJERPH, MDPI, vol. 19(21), pages 1-28, November.
    5. Pang, Zhihong & O'Neill, Zheng & Chen, Yan & Zhang, Jian & Cheng, Hwakong & Dong, Bing, 2023. "Adopting occupancy-based HVAC controls in commercial building energy codes: Analysis of cost-effectiveness and decarbonization potential," Applied Energy, Elsevier, vol. 349(C).
    6. Pouranian, Fatemeh & Akbari, Habibollah & Hosseinalipour, S.M., 2021. "Performance assessment of solar chimney coupled with earth-to-air heat exchanger: A passive alternative for an indoor swimming pool ventilation in hot-arid climate," Applied Energy, Elsevier, vol. 299(C).
    7. Li, Chunxiao & Cui, Can & Li, Ming, 2023. "A proactive 2-stage indoor CO2-based demand-controlled ventilation method considering control performance and energy efficiency," Applied Energy, Elsevier, vol. 329(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raman, Naren Srivaths & Chen, Bo & Barooah, Prabir, 2022. "On energy-efficient HVAC operation with Model Predictive Control: A multiple climate zone study," Applied Energy, Elsevier, vol. 324(C).
    2. Kong, Meng & Dong, Bing & Zhang, Rongpeng & O'Neill, Zheng, 2022. "HVAC energy savings, thermal comfort and air quality for occupant-centric control through a side-by-side experimental study," Applied Energy, Elsevier, vol. 306(PA).
    3. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    4. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    5. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    6. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    7. Yoon, Y. & Jung, S. & Im, P. & Salonvaara, M. & Bhandari, M. & Kunwar, N., 2023. "Empirical validation of building energy simulation model input parameter for multizone commercial building during the cooling season," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    8. Nilofar Asim & Marzieh Badiei & Masita Mohammad & Halim Razali & Armin Rajabi & Lim Chin Haw & Mariyam Jameelah Ghazali, 2022. "Sustainability of Heating, Ventilation and Air-Conditioning (HVAC) Systems in Buildings—An Overview," IJERPH, MDPI, vol. 19(2), pages 1-16, January.
    9. Naylor, Sophie & Gillott, Mark & Lau, Tom, 2018. "A review of occupant-centric building control strategies to reduce building energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 1-10.
    10. Gao, Dian-ce & Wang, Shengwei & Shan, Kui, 2016. "In-situ implementation and evaluation of an online robust pump speed control strategy for avoiding low delta-T syndrome in complex chilled water systems of high-rise buildings," Applied Energy, Elsevier, vol. 171(C), pages 541-554.
    11. Chen, Jiaoliao & Xu, Fang & Tan, Dapeng & Shen, Zheng & Zhang, Libin & Ai, Qinglin, 2015. "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model," Applied Energy, Elsevier, vol. 141(C), pages 106-118.
    12. Pang, Zhihong & O'Neill, Zheng & Chen, Yan & Zhang, Jian & Cheng, Hwakong & Dong, Bing, 2023. "Adopting occupancy-based HVAC controls in commercial building energy codes: Analysis of cost-effectiveness and decarbonization potential," Applied Energy, Elsevier, vol. 349(C).
    13. Pisello, Anna Laura & Asdrubali, Francesco, 2014. "Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies," Applied Energy, Elsevier, vol. 133(C), pages 224-235.
    14. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    15. Raman, Naren Srivaths & Devaprasad, Karthikeya & Chen, Bo & Ingley, Herbert A. & Barooah, Prabir, 2020. "Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations," Applied Energy, Elsevier, vol. 279(C).
    16. Seokho Kim & Yujin Song & Yoondong Sung & Donghyun Seo, 2019. "Development of a Consecutive Occupancy Estimation Framework for Improving the Energy Demand Prediction Performance of Building Energy Modeling Tools," Energies, MDPI, vol. 12(3), pages 1-21, January.
    17. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Lee, Minhyun & Jeong, Kwangbok & Koo, Choongwan & Jeong, Jaewook, 2017. "Establishment of an optimal occupant behavior considering the energy consumption and indoor environmental quality by region," Applied Energy, Elsevier, vol. 204(C), pages 1431-1443.
    18. Li, Nan & Yang, Zheng & Becerik-Gerber, Burcin & Tang, Chao & Chen, Nanlin, 2015. "Why is the reliability of building simulation limited as a tool for evaluating energy conservation measures?," Applied Energy, Elsevier, vol. 159(C), pages 196-205.
    19. Goyal, Siddharth & Barooah, Prabir & Middelkoop, Timothy, 2015. "Experimental study of occupancy-based control of HVAC zones," Applied Energy, Elsevier, vol. 140(C), pages 75-84.
    20. Wang, Junqi & Jiang, Lanfei & Yu, Hanhui & Feng, Zhuangbo & Castaño-Rosa, Raúl & Cao, Shi-jie, 2024. "Computer vision to advance the sensing and control of built environment towards occupant-centric sustainable development: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:293:y:2021:i:c:s0306261921003469. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.