IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v288y2021ics0306261921001690.html
   My bibliography  Save this article

An integrated assessment framework for the decarbonization of the electricity generation sector

Author

Listed:
  • Gupta, Ankit
  • Davis, Matthew
  • Kumar, Amit

Abstract

The generation of electricity can have major environmental impacts not only in terms of greenhouse gas (GHG) emissions but also in terms of water use. There has been limited integrated assessment of the environmental footprints of deep decarbonization of electricity generation. This research develops an integrated approach to evaluate the GHG emission mitigation, water footprints, and marginal abatement costs of electricity generation decarbonization pathways. The decarbonization of Canada’s electricity sector was used as a case study. A Long-range Energy Alternative Planning model of the electricity generation sector was developed to determine future regional electricity generation technology mixes. A Water Evaluation and Planning model was also developed for the sector considering 530 power plants, 156 electricity generation water demand sites, and 74 major rivers. The energy and water-use models were integrated, and two scenarios were evaluated for a planning horizon of 2019–2050 using this integrated framework. The first scenario was based on current policy trajectories and the second was developed with a deep electricity decarbonization target of 100%. In the current policy scenario, water consumption and GHG emissions increased 22% and decreased 49%, respectively, by 2050 from 2019. The fully decarbonized scenario resulted in water consumption savings and negative marginal GHG abatement costs. The results quantify the co-benefits of decarbonizing electricity systems and show that transitioning toward renewables can reduce GHG emissions, water consumption, and system costs. These results may be important for policy development at the regional and national levels as well as internationally for jurisdictions looking to transition to carbon-free electricity.

Suggested Citation

  • Gupta, Ankit & Davis, Matthew & Kumar, Amit, 2021. "An integrated assessment framework for the decarbonization of the electricity generation sector," Applied Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001690
    DOI: 10.1016/j.apenergy.2021.116634
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921001690
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116634?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arash Aloosh & Geert Bekaert, 2022. "Currency Factors," Management Science, INFORMS, vol. 68(6), pages 4042-4064, June.
    2. Claudia M. Buch & Benjamin Weigert, 2019. "Macroprudential policy in a currency union," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 155(1), pages 23-33, February.
    3. Huang, Weilong & Ma, Ding & Chen, Wenying, 2017. "Connecting water and energy: Assessing the impacts of carbon and water constraints on China’s power sector," Applied Energy, Elsevier, vol. 185(P2), pages 1497-1505.
    4. ., 2020. "A Debt Projection Model," Chapters, in: Tax Policy and Uncertainty, chapter 3, pages 29-72, Edward Elgar Publishing.
    5. Barrington-Leigh, Christopher & Ouliaris, Mark, 2017. "The renewable energy landscape in Canada: A spatial analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 809-819.
    6. Honohan,Patrick, 2019. "Currency, Credit and Crisis," Cambridge Books, Cambridge University Press, number 9781108481892, September.
    7. Evers, Gerwin & Chappin, Maryse M.H., 2020. "Knowledge sharing in smart grid pilot projects," Energy Policy, Elsevier, vol. 143(C).
    8. Xing Yu & Yanyin Li & Zhongkai Wan, 2019. "Dynamic Currency Futures and Options Hedging Model," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-11, July.
    9. Thomas Wl L T.W. Scheeren & Jan Bakker & Daniel De Backer & Djillali Annane & Pierre Asfar & Evert Christiaan Boerma & Maurizio Cecconi & Arnaldo Dubin & Martin Dunser & Jacques Duranteau & Anthony A., 2019. "Current use of vasopressors in septic shock," ULB Institutional Repository 2013/284941, ULB -- Universite Libre de Bruxelles.
    10. Zhou, Nan & Zhang, Jingjing & Khanna, Nina & Fridley, David & Jiang, Shan & Liu, Xu, 2019. "Intertwined impacts of water, energy development, and carbon emissions in China," Applied Energy, Elsevier, vol. 238(C), pages 78-91.
    11. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    12. ., 2020. "Stochastic Projections and Debt," Chapters, in: Tax Policy and Uncertainty, chapter 5, pages 113-134, Edward Elgar Publishing.
    13. Kriwoluzky, Alexander & Müller, Gernot J. & Wolf, Martin, 2019. "Exit expectations and debt crises in currency unions," Journal of International Economics, Elsevier, vol. 121(C).
    14. Mohammad Alawamleh & Loiy Bani Ismail & Marwan Al Nahleh & Kamal A.M. Al-Qudah, 2020. "Role of open innovation in project management CSF," International Journal of Business Innovation and Research, Inderscience Enterprises Ltd, vol. 21(4), pages 466-489.
    15. Howells, Mark & Rogner, Holger & Strachan, Neil & Heaps, Charles & Huntington, Hillard & Kypreos, Socrates & Hughes, Alison & Silveira, Semida & DeCarolis, Joe & Bazillian, Morgan & Roehrl, Alexander, 2011. "OSeMOSYS: The Open Source Energy Modeling System: An introduction to its ethos, structure and development," Energy Policy, Elsevier, vol. 39(10), pages 5850-5870, October.
    16. Davis, Matthew & Ahiduzzaman, Md. & Kumar, Amit, 2018. "How will Canada’s greenhouse gas emissions change by 2050? A disaggregated analysis of past and future greenhouse gas emissions using bottom-up energy modelling and Sankey diagrams," Applied Energy, Elsevier, vol. 220(C), pages 754-786.
    17. Jupiterfab, 2020. "Arts and social projects in the 21st century," City, Taylor & Francis Journals, vol. 24(1-2), pages 195-209, March.
    18. ., 2020. "Projecting Tax Revenues," Chapters, in: Tax Policy and Uncertainty, chapter 2, pages 7-28, Edward Elgar Publishing.
    19. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.
    20. Miller, Lindsay & Carriveau, Rupp, 2017. "Balancing the carbon and water footprints of the Ontario energy mix," Energy, Elsevier, vol. 125(C), pages 562-568.
    21. Agrawal, Nikhil & Ahiduzzaman, Md & Kumar, Amit, 2018. "The development of an integrated model for the assessment of water and GHG footprints for the power generation sector," Applied Energy, Elsevier, vol. 216(C), pages 558-575.
    22. Parkinson, Simon C. & Makowski, Marek & Krey, Volker & Sedraoui, Khaled & Almasoud, Abdulrahman H. & Djilali, Ned, 2018. "A multi-criteria model analysis framework for assessing integrated water-energy system transformation pathways," Applied Energy, Elsevier, vol. 210(C), pages 477-486.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lingchun Hou & Yuanping Wang & Yingheng Zheng & Aomei Zhang, 2022. "The Impact of Vehicle Ownership on Carbon Emissions in the Transportation Sector," Sustainability, MDPI, vol. 14(19), pages 1-23, October.
    2. Róbert Csalódi & Tímea Czvetkó & Viktor Sebestyén & János Abonyi, 2022. "Sectoral Analysis of Energy Transition Paths and Greenhouse Gas Emissions," Energies, MDPI, vol. 15(21), pages 1-26, October.
    3. Biéron, M. & Le Dréau, J. & Haas, B., 2023. "Assessment of the marginal technologies reacting to demand response events: A French case-study," Energy, Elsevier, vol. 275(C).
    4. Carrelhas, A.A.D. & Gato, L.M.C. & Henriques, J.C.C., 2023. "Peak shaving control in OWC wave energy converters: From concept to implementation in the Mutriku wave power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 180(C).
    5. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    6. Kalantari, Hosein & Ali Ghoreishi-Madiseh, Seyed, 2023. "Study of mine exhaust heat recovery with fully-coupled direct capture and indirect delivery systems," Applied Energy, Elsevier, vol. 334(C).
    7. Tian, Xuelin & An, Chunjiang & Chen, Zhikun, 2023. "The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    8. Davis, M. & Okunlola, A. & Di Lullo, G. & Giwa, T. & Kumar, A., 2023. "Greenhouse gas reduction potential and cost-effectiveness of economy-wide hydrogen-natural gas blending for energy end uses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dougier, Nathanael & Garambois, Pierre & Gomand, Julien & Roucoules, Lionel, 2021. "Multi-objective non-weighted optimization to explore new efficient design of electrical microgrids," Applied Energy, Elsevier, vol. 304(C).
    2. Liu, Jia & Ma, Tao & Wu, Huijun & Yang, Hongxing, 2023. "Study on optimum energy fuel mix for urban cities integrated with pumped hydro storage and green vehicles," Applied Energy, Elsevier, vol. 331(C).
    3. Zamanipour, Behzad & Ghadaksaz, Hesam & Keppo, Ilkka & Saboohi, Yadollah, 2023. "Electricity supply and demand dynamics in Iran considering climate change-induced stresses," Energy, Elsevier, vol. 263(PE).
    4. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    5. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    6. Bichaye Tesfaye & Monica Lengoiboni & Jaap Zevenbergen & Belay Simane, 2023. "Rethinking the Impact of Land Certification on Tenure Security, Land Disputes, Land Management, and Agricultural Production: Insights from South Wello, Ethiopia," Land, MDPI, vol. 12(9), pages 1-25, September.
    7. Luis Sarmiento & Thorsten Burandt & Konstantin Löffler & Pao-Yu Oei, 2019. "Analyzing Scenarios for the Integration of Renewable Energy Sources in the Mexican Energy System—An Application of the Global Energy System Model (GENeSYS-MOD)," Energies, MDPI, vol. 12(17), pages 1-24, August.
    8. Cano-Rodríguez, Sara & Rubio-Varas, Mar & Sesma-Martín, Diego, 2022. "At the crossroad between green and thirsty: Carbon emissions and water consumption of Spanish thermoelectricity generation, 1969–2019," Ecological Economics, Elsevier, vol. 195(C).
    9. Tian, Xuelin & An, Chunjiang & Chen, Zhikun, 2023. "The role of clean energy in achieving decarbonization of electricity generation, transportation, and heating sectors by 2050: A meta-analysis review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    10. Zhao, Yuhuan & Shi, Qiaoling & li, Hao & Qian, Zhiling & Zheng, Lu & Wang, Song & He, Yizhang, 2022. "Simulating the economic and environmental effects of integrated policies in energy-carbon-water nexus of China," Energy, Elsevier, vol. 238(PA).
    11. Timmons, D. & Dhunny, A.Z. & Elahee, K. & Havumaki, B. & Howells, M. & Khoodaruth, A. & Lema-Driscoll, A.K. & Lollchund, M.R. & Ramgolam, Y.K. & Rughooputh, S.D.D.V. & Surroop, D., 2019. "Cost minimization for fully renewable electricity systems: A Mauritius case study," Energy Policy, Elsevier, vol. 133(C).
    12. Yue, Xiufeng & Patankar, Neha & Decarolis, Joseph & Chiodi, Alessandro & Rogan, Fionn & Deane, J.P. & O’Gallachoir, Brian, 2020. "Least cost energy system pathways towards 100% renewable energy in Ireland by 2050," Energy, Elsevier, vol. 207(C).
    13. Liu, Yitong & Chen, Bin & Wei, Wendong & Shao, Ling & Li, Zhi & Jiang, Weizhong & Chen, Guoqian, 2020. "Global water use associated with energy supply, demand and international trade of China," Applied Energy, Elsevier, vol. 257(C).
    14. Molinos-Senante, María & Sala-Garrido, Ramón, 2018. "Evaluation of energy performance of drinking water treatment plants: Use of energy intensity and energy efficiency metrics," Applied Energy, Elsevier, vol. 229(C), pages 1095-1102.
    15. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    16. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    17. Wang, Xue-Chao & Klemeš, Jiří Jaromír & Ouyang, Xiao & Xu, Zihan & Fan, Weiguo & Wei, Hejie & Song, Weize, 2021. "Regional embodied Water-Energy-Carbon efficiency of China," Energy, Elsevier, vol. 224(C).
    18. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    19. Haikarainen, Carl & Pettersson, Frank & Saxén, Henrik, 2020. "Optimized phasing of the development of a regional energy system," Energy, Elsevier, vol. 206(C).
    20. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:288:y:2021:i:c:s0306261921001690. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.