IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v210y2018icp477-486.html
   My bibliography  Save this article

A multi-criteria model analysis framework for assessing integrated water-energy system transformation pathways

Author

Listed:
  • Parkinson, Simon C.
  • Makowski, Marek
  • Krey, Volker
  • Sedraoui, Khaled
  • Almasoud, Abdulrahman H.
  • Djilali, Ned

Abstract

Sustainable development objectives surrounding water and energy are interdependent, and yet the associated performance metrics are often distinct. Regional planners tasked with designing future supply systems therefore require multi-criteria analysis methods and tools to determine a suitable combination of technologies and scale of investments. Previous research focused on optimizing system development strategy with respect to a single design objective, leading to potentially negative outcomes for other important sustainability metrics. This paper addresses this limitation, and presents a flexible multi-criteria model analysis framework that is applicable to long-term energy and water supply planning at national or regional scales in an interactive setup with decision-makers. The framework incorporates a linear systems-engineering model of the coupled supply technologies and inter-provincial transmission networks. The multi-criteria analysis approach enables the specification of diverse decision-making preferences for disparate criteria, and leads to quantitative understanding of trade-offs between the resulting criteria values of the corresponding Pareto-optimal solutions. A case study of the water-stressed nation of Saudi Arabia explores preferences combining aspiration and reservation levels in terms of cost, water sustainability and electricity sector CO2 emissions. The analysis reveals a suite of trade-off solutions, in which potential integrated water-energy system configurations remain relatively ambitious from both an economic and environmental perspective. The results highlight the importance of identifying suitable tradeoffs between water and energy sustainability objectives during the formulation of coupled transformation strategies.

Suggested Citation

  • Parkinson, Simon C. & Makowski, Marek & Krey, Volker & Sedraoui, Khaled & Almasoud, Abdulrahman H. & Djilali, Ned, 2018. "A multi-criteria model analysis framework for assessing integrated water-energy system transformation pathways," Applied Energy, Elsevier, vol. 210(C), pages 477-486.
  • Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:477-486
    DOI: 10.1016/j.apenergy.2016.12.142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916319250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tom Gleeson & Yoshihide Wada & Marc F. P. Bierkens & Ludovicus P. H. van Beek, 2012. "Water balance of global aquifers revealed by groundwater footprint," Nature, Nature, vol. 488(7410), pages 197-200, August.
    2. Phillips, Benjamin R. & Middleton, Richard S., 2012. "SimWIND: A geospatial infrastructure model for optimizing wind power generation and transmission," Energy Policy, Elsevier, vol. 43(C), pages 291-302.
    3. Maksud Bekchanov & Claudia Ringler & Anik Bhaduri & Marc Jeuland, 2015. "How would the Rogun Dam affect water and energy scarcity in Central Asia?," Water International, Taylor & Francis Journals, vol. 40(5-6), pages 856-876, September.
    4. Simon Parkinson & Ned Djilali, 2015. "Robust response to hydro-climatic change in electricity generation planning," Climatic Change, Springer, vol. 130(4), pages 475-489, June.
    5. Granat, Janusz & Makowski, Marek, 2000. "Interactive specification and analysis of aspiration-based preferences," European Journal of Operational Research, Elsevier, vol. 122(2), pages 469-485, April.
    6. David McCollum & Volker Krey & Keywan Riahi & Peter Kolp & Arnulf Grubler & Marek Makowski & Nebojsa Nakicenovic, 2013. "Climate policies can help resolve energy security and air pollution challenges," Climatic Change, Springer, vol. 119(2), pages 479-494, July.
    7. Silvio Pereira-Cardenal & Henrik Madsen & Karsten Arnbjerg-Nielsen & Niels Riegels & Roar Jensen & Birger Mo & Ivar Wangensteen & Peter Bauer-Gottwein, 2014. "Assessing climate change impacts on the Iberian power system using a coupled water-power model," Climatic Change, Springer, vol. 126(3), pages 351-364, October.
    8. Leo Schrattenholzer & Asami Miketa & Keywan Riahi & Richard Alexander Roehrl, 2004. "Achieving a Sustainable Global Energy System," Books, Edward Elgar Publishing, number 3508.
    9. Wakeel, Muhammad & Chen, Bin & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2016. "Energy consumption for water use cycles in different countries: A review," Applied Energy, Elsevier, vol. 178(C), pages 868-885.
    10. Tidwell, Vincent C. & Macknick, Jordan & Zemlick, Katie & Sanchez, Jasmine & Woldeyesus, Tibebe, 2014. "Transitioning to zero freshwater withdrawal in the U.S. for thermoelectric generation," Applied Energy, Elsevier, vol. 131(C), pages 508-516.
    11. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2016. "Adaptation to climate-induced regional water constraints in the Spanish energy sector: An integrated assessment," Energy Policy, Elsevier, vol. 97(C), pages 123-135.
    12. Jornada, Daniel & Leon, V. Jorge, 2016. "Robustness methodology to aid multiobjective decision making in the electricity generation capacity expansion problem to minimize cost and water withdrawal," Applied Energy, Elsevier, vol. 162(C), pages 1089-1108.
    13. Santhosh, Apoorva & Farid, Amro M. & Youcef-Toumi, Kamal, 2014. "Real-time economic dispatch for the supply side of the energy-water nexus," Applied Energy, Elsevier, vol. 122(C), pages 42-52.
    14. Dubreuil, Aurelie & Assoumou, Edi & Bouckaert, Stephanie & Selosse, Sandrine & Maı¨zi, Nadia, 2013. "Water modeling in an energy optimization framework – The water-scarce middle east context," Applied Energy, Elsevier, vol. 101(C), pages 268-279.
    15. Ibanez, Eduardo & Magee, Timothy & Clement, Mitch & Brinkman, Gregory & Milligan, Michael & Zagona, Edith, 2014. "Enhancing hydropower modeling in variable generation integration studies," Energy, Elsevier, vol. 74(C), pages 518-528.
    16. Bekchanov, Maksud & Ringler, C. & Bhaduri, A. & Jeuland, M., "undated". "How would the Rogun Dam affect water and energy scarcity in Central Asia?," Papers published in Journals (Open Access) H047222, International Water Management Institute.
    17. Welsch, M. & Hermann, S. & Howells, M. & Rogner, H.H. & Young, C. & Ramma, I. & Bazilian, M. & Fischer, G. & Alfstad, T. & Gielen, D. & Le Blanc, D. & Röhrl, A. & Steduto, P. & Müller, A., 2014. "Adding value with CLEWS – Modelling the energy system and its interdependencies for Mauritius," Applied Energy, Elsevier, vol. 113(C), pages 1434-1445.
    18. Omar K.M. Ouda, 2014. "Impacts of agricultural policy on irrigation water demand: a case study of Saudi Arabia," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 30(2), pages 282-292, June.
    19. Pohekar, S. D. & Ramachandran, M., 2004. "Application of multi-criteria decision making to sustainable energy planning--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(4), pages 365-381, August.
    20. Bouckaert, Stéphanie & Assoumou, Edi & Selosse, Sandrine & Maïzi, Nadia, 2014. "A prospective analysis of waste heat management at power plants and water conservation issues using a global TIMES model," Energy, Elsevier, vol. 68(C), pages 80-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ball, Christopher Stephen & Vögele, Stefan & Grajewski, Matthias & Kuckshinrichs, Wilhelm, 2021. "E-mobility from a multi-actor point of view: Uncertainties and their impacts," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    2. Zhou, Yang & Han, Jingcheng & Zhou, Ya, 2024. "Synergizing carbon trading and water management for urban sustainability: A city-level multi-objective planning framework," Applied Energy, Elsevier, vol. 359(C).
    3. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    4. Vakilifard, Negar & A. Bahri, Parisa & Anda, Martin & Ho, Goen, 2019. "An interactive planning model for sustainable urban water and energy supply," Applied Energy, Elsevier, vol. 235(C), pages 332-345.
    5. Gupta, Ankit & Davis, Matthew & Kumar, Amit, 2021. "An integrated assessment framework for the decarbonization of the electricity generation sector," Applied Energy, Elsevier, vol. 288(C).
    6. Hashemi, Seyed Mohsen & Tabarzadi, Mahdi & Fallahi, Farhad & Rostam Niakan Kalhori, Masoumeh & Abdollahzadeh, Davood & Qadrdan, Meysam, 2024. "Water and emission constrained generation expansion planning for Iran power system," Energy, Elsevier, vol. 288(C).
    7. Gonzalez, Jose M. & Tomlinson, James E. & Harou, Julien J. & Martínez Ceseña, Eduardo A. & Panteli, Mathaios & Bottacin-Busolin, Andrea & Hurford, Anthony & Olivares, Marcelo A. & Siddiqui, Afzal & Er, 2020. "Spatial and sectoral benefit distribution in water-energy system design," Applied Energy, Elsevier, vol. 269(C).
    8. Horea Olosutean & Maria Cerciu, 2022. "Water Sustainability in the Context of Global Warming: A Bibliometric Analysis," Sustainability, MDPI, vol. 14(14), pages 1-14, July.
    9. Srinivasan, Shweta & Kholod, Nazar & Chaturvedi, Vaibhav & Ghosh, Probal Pratap & Mathur, Ritu & Clarke, Leon & Evans, Meredydd & Hejazi, Mohamad & Kanudia, Amit & Koti, Poonam Nagar & Liu, Bo & Parik, 2018. "Water for electricity in India: A multi-model study of future challenges and linkages to climate change mitigation," Applied Energy, Elsevier, vol. 210(C), pages 673-684.
    10. Hongtao Ren & Wenji Zhou & Marek Makowski & Shaohui Zhang & Yadong Yu & Tieju Ma, 2023. "A multi-criteria decision support model for adopting energy efficiency technologies in the iron and steel industry," Annals of Operations Research, Springer, vol. 325(2), pages 1111-1132, June.
    11. Molinos-Senante, María & Sala-Garrido, Ramón, 2018. "Evaluation of energy performance of drinking water treatment plants: Use of energy intensity and energy efficiency metrics," Applied Energy, Elsevier, vol. 229(C), pages 1095-1102.
    12. Lei Xu & Zongfei Wang & Hasan Ümitcan Yilmaz & Witold-Roger Poganietz & Hongtao Ren & Ying Guo, 2021. "Considering the Impacts of Metal Depletion on the European Electricity System," Energies, MDPI, vol. 14(6), pages 1-14, March.
    13. Hossam A. Gabbar & Abdelazeem A. Abdelsalam, 2020. "Energy—Water Nexus: Integration, Monitoring, KPIs Tools and Research Vision," Energies, MDPI, vol. 13(24), pages 1-22, December.
    14. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    15. Zamanipour, Behzad & Ghadaksaz, Hesam & Keppo, Ilkka & Saboohi, Yadollah, 2023. "Electricity supply and demand dynamics in Iran considering climate change-induced stresses," Energy, Elsevier, vol. 263(PE).
    16. Govind Joshi & Salman Mohagheghi, 2021. "Optimal Operation of Combined Energy and Water Systems for Community Resilience against Natural Disasters," Energies, MDPI, vol. 14(19), pages 1-19, September.
    17. Khan, Zarrar & Linares, Pedro & Rutten, Martine & Parkinson, Simon & Johnson, Nils & García-González, Javier, 2018. "Spatial and temporal synchronization of water and energy systems: Towards a single integrated optimization model for long-term resource planning," Applied Energy, Elsevier, vol. 210(C), pages 499-517.
    18. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    19. Fuentes-Cortés, Luis Fabián & Flores-Tlacuahuac, Antonio, 2018. "Integration of distributed generation technologies on sustainable buildings," Applied Energy, Elsevier, vol. 224(C), pages 582-601.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Zarrar & Linares, Pedro & García-González, Javier, 2017. "Integrating water and energy models for policy driven applications. A review of contemporary work and recommendations for future developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1123-1138.
    2. Khan, Zarrar & Linares, Pedro & Rutten, Martine & Parkinson, Simon & Johnson, Nils & García-González, Javier, 2018. "Spatial and temporal synchronization of water and energy systems: Towards a single integrated optimization model for long-term resource planning," Applied Energy, Elsevier, vol. 210(C), pages 499-517.
    3. Zhang, Xiaodong & Vesselinov, Velimir V., 2016. "Energy-water nexus: Balancing the tradeoffs between two-level decision makers," Applied Energy, Elsevier, vol. 183(C), pages 77-87.
    4. Logan, Lauren H. & Stillwell, Ashlynn S., 2018. "Probabilistic assessment of aquatic species risk from thermoelectric power plant effluent: Incorporating biology into the energy-water nexus," Applied Energy, Elsevier, vol. 210(C), pages 434-450.
    5. Wang, Can & Zheng, Xinzhu & Cai, Wenjia & Gao, Xue & Berrill, Peter, 2017. "Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?," Applied Energy, Elsevier, vol. 205(C), pages 1119-1127.
    6. Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
    7. Huang, Weilong & Ma, Ding & Chen, Wenying, 2017. "Connecting water and energy: Assessing the impacts of carbon and water constraints on China’s power sector," Applied Energy, Elsevier, vol. 185(P2), pages 1497-1505.
    8. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    9. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    10. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    11. English, J. & Niet, T. & Lyseng, B. & Palmer-Wilson, K. & Keller, V. & Moazzen, I. & Pitt, L. & Wild, P. & Rowe, A., 2017. "Impact of electrical intertie capacity on carbon policy effectiveness," Energy Policy, Elsevier, vol. 101(C), pages 571-581.
    12. Larry Dale & Nihan Karali & Dev Millstein & Mike Carnall & Sebastian Vicuña & Nicolas Borchers & Eduardo Bustos & Joe O’Hagan & David Purkey & Charles Heaps & Jack Sieber & William Collins & Michael S, 2015. "An integrated assessment of water-energy and climate change in sacramento, california: how strong is the nexus?," Climatic Change, Springer, vol. 132(2), pages 223-235, September.
    13. Jing Liu & Yongping Li & Guohe Huang & Cai Suo & Shuo Yin, 2017. "An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems," Energies, MDPI, vol. 10(11), pages 1-23, November.
    14. Shang, Yizi & Hei, Pengfei & Lu, Shibao & Shang, Ling & Li, Xiaofei & Wei, Yongping & Jia, Dongdong & Jiang, Dong & Ye, Yuntao & Gong, Jiaguo & Lei, Xiaohui & Hao, Mengmeng & Qiu, Yaqin & Liu, Jiahong, 2018. "China’s energy-water nexus: Assessing water conservation synergies of the total coal consumption cap strategy until 2050," Applied Energy, Elsevier, vol. 210(C), pages 643-660.
    15. Hickman, William & Muzhikyan, Aramazd & Farid, Amro M., 2017. "The synergistic role of renewable energy integration into the unit commitment of the energy water nexus," Renewable Energy, Elsevier, vol. 108(C), pages 220-229.
    16. Magalhaes, M. & Ringler, C. & Verma, Shilp & Schmitter, Petra, 2021. "Accelerating rural energy access for agricultural transformation: contribution of the CGIAR Research Program on Water, Land and Ecosystems to transforming food, land and water systems in a climate cri," IWMI Books, Reports H050910, International Water Management Institute.
    17. Price, James & Zeyringer, Marianne & Konadu, Dennis & Sobral Mourão, Zenaida & Moore, Andy & Sharp, Ed, 2018. "Low carbon electricity systems for Great Britain in 2050: An energy-land-water perspective," Applied Energy, Elsevier, vol. 228(C), pages 928-941.
    18. Pauline Macharia & Maria Wirth & Paul Yillia & Norbert Kreuzinger, 2021. "Examining the Relative Impact of Drivers on Energy Input for Municipal Water Supply in Africa," Sustainability, MDPI, vol. 13(15), pages 1-27, July.
    19. Zhang, Xiaohong & Qi, Yan & Wang, Yanqing & Wu, Jun & Lin, Lili & Peng, Hong & Qi, Hui & Yu, Xiaoyu & Zhang, Yanzong, 2016. "Effect of the tap water supply system on China's economy and energy consumption, and its emissions’ impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 660-671.
    20. Zulfiya Suleimenova, 2020. "Water security in Central Asia and Southern Caucasus," Asia-Pacific Sustainable Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 27(1), pages 75-93, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:210:y:2018:i:c:p:477-486. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.