IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/706897.html
   My bibliography  Save this article

Developing a Robust Surrogate Model of Chemical Flooding Based on the Artificial Neural Network for Enhanced Oil Recovery Implications

Author

Listed:
  • Mohammad Ali Ahmadi

Abstract

Application of chemical flooding in petroleum reservoirs turns into hot topic of the recent researches. Development strategies of the aforementioned technique are more robust and precise when we consider both economical points of view (net present value, NPV) and technical points of view (recovery factor, RF). In current study many attempts have been made to propose predictive model for estimation of efficiency of chemical flooding in oil reservoirs. To gain this end, a couple of swarm intelligence and artificial neural network (ANN) is employed. Also, lucrative and high precise chemical flooding data banks reported in previous attentions are utilized to test and validate proposed intelligent model. According to the mean square error (MSE), correlation coefficient, and average absolute relative deviation, the suggested swarm approach has acceptable reliability, integrity and robustness. Thus, the proposed intelligent model can be considered as an alternative model to predict the efficiency of chemical flooding in oil reservoir when the required experimental data are not available or accessible.

Suggested Citation

  • Mohammad Ali Ahmadi, 2015. "Developing a Robust Surrogate Model of Chemical Flooding Based on the Artificial Neural Network for Enhanced Oil Recovery Implications," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-9, January.
  • Handle: RePEc:hin:jnlmpe:706897
    DOI: 10.1155/2015/706897
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/706897.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/706897.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/706897?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. You, Junyu & Ampomah, William & Sun, Qian, 2020. "Co-optimizing water-alternating-carbon dioxide injection projects using a machine learning assisted computational framework," Applied Energy, Elsevier, vol. 279(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:706897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.