IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v278y2020ics0306261920311272.html
   My bibliography  Save this article

Methanol based Solid Oxide Reversible energy storage system – Does it make sense thermodynamically?

Author

Listed:
  • Giannoulidis, Sotiris
  • Venkataraman, Vikrant
  • Woudstra, Theo
  • Aravind, P.V.

Abstract

Hydrogen is yet to be widely accepted as a fuel for everyday operation due to stringent safety regulations involved around it. In the meanwhile, methanol could be a potential fuel of the future. In this work, an extensive thermodynamic investigation on an energy storage system with a reversible solid oxide stack at its core is presented. The current investigated system can operate either as an electrolyzer or as a fuel cell. It uses steam for electrolysis (charging mode) and methanol for fuel cell operation (discharging mode). A process model of the entire system is formulated by using Aspen Plus™. Energy and exergy efficiency have been reported for both modes of operation, along with maximum roundtrip efficiency that can be achieved for the entire system operation. Results indicate that during electrolysis mode, a maximum energy and exergy efficiency of 67.94% and 72.30% can be achieved and for fuel cell mode operation, the numbers are 74.14% and 62.61% respectively. The maximum reported value of RT efficiency is 64.32% which is quite high considering the infancy of reversible solid oxide technology and the fact that methanol is used as the fuel.

Suggested Citation

  • Giannoulidis, Sotiris & Venkataraman, Vikrant & Woudstra, Theo & Aravind, P.V., 2020. "Methanol based Solid Oxide Reversible energy storage system – Does it make sense thermodynamically?," Applied Energy, Elsevier, vol. 278(C).
  • Handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311272
    DOI: 10.1016/j.apenergy.2020.115623
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920311272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115623?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-musleh, Easa I. & Mallapragada, Dharik S. & Agrawal, Rakesh, 2014. "Continuous power supply from a baseload renewable power plant," Applied Energy, Elsevier, vol. 122(C), pages 83-93.
    2. Barelli, L. & Bidini, G. & Ottaviano, A., 2015. "Hydromethane generation through SOE (solid oxide electrolyser): Advantages of H2O–CO2 co-electrolysis," Energy, Elsevier, vol. 90(P1), pages 1180-1191.
    3. Wendel, Christopher H. & Braun, Robert J., 2016. "Design and techno-economic analysis of high efficiency reversible solid oxide cell systems for distributed energy storage," Applied Energy, Elsevier, vol. 172(C), pages 118-131.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kontou, V. & Grimekis, D. & Braimakis, K. & Karellas, S., 2022. "Techno-economic assessment of dimethyl carbonate production based on carbon capture and utilization and power-to-fuel technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    2. Sun, Yi & Qian, Tang & Zhu, Jingdong & Zheng, Nan & Han, Yu & Xiao, Gang & Ni, Meng & Xu, Haoran, 2023. "Dynamic simulation of a reversible solid oxide cell system for efficient H2 production and power generation," Energy, Elsevier, vol. 263(PA).
    3. Amladi, Amogh & Venkataraman, Vikrant & Woudstra, Theo & Aravind, P.V., 2024. "Hot air recirculation enlarges efficient operating window of reversible solid oxide cell systems: A thermodynamic study of energy storage using ammonia," Applied Energy, Elsevier, vol. 355(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giap, Van-Tien & Lee, Young Duk & Kim, Young Sang & Ahn, Kook Young, 2020. "A novel electrical energy storage system based on a reversible solid oxide fuel cell coupled with metal hydrides and waste steam," Applied Energy, Elsevier, vol. 262(C).
    2. Butera, Giacomo & Jensen, Søren Højgaard & Clausen, Lasse Røngaard, 2019. "A novel system for large-scale storage of electricity as synthetic natural gas using reversible pressurized solid oxide cells," Energy, Elsevier, vol. 166(C), pages 738-754.
    3. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2019. "Solid oxide fuel cell and advanced combustion engine combined cycle: A pathway to 70% electrical efficiency," Applied Energy, Elsevier, vol. 235(C), pages 391-408.
    4. Frank, Matthias & Deja, Robert & Peters, Roland & Blum, Ludger & Stolten, Detlef, 2018. "Bypassing renewable variability with a reversible solid oxide cell plant," Applied Energy, Elsevier, vol. 217(C), pages 101-112.
    5. Squalli, Jay, 2017. "Renewable energy, coal as a baseload power source, and greenhouse gas emissions: Evidence from U.S. state-level data," Energy, Elsevier, vol. 127(C), pages 479-488.
    6. Chen, Yanbo & Luo, Yu & Shi, Yixiang & Cai, Ningsheng, 2020. "Theoretical modeling of a pressurized tubular reversible solid oxide cell for methane production by co-electrolysis," Applied Energy, Elsevier, vol. 268(C).
    7. Saheli Biswas & Shambhu Singh Rathore & Aniruddha Pramod Kulkarni & Sarbjit Giddey & Sankar Bhattacharya, 2021. "A Theoretical Study on Reversible Solid Oxide Cells as Key Enablers of Cyclic Conversion between Electrical Energy and Fuel," Energies, MDPI, vol. 14(15), pages 1-18, July.
    8. Wang, Chaoyang & Chen, Ming & Liu, Ming & Yan, Junjie, 2020. "Dynamic modeling and parameter analysis study on reversible solid oxide cells during mode switching transient processes," Applied Energy, Elsevier, vol. 263(C).
    9. Faydi, Younes & Djdiaa, AbdelAli & Laabassi, Hichame & Ait Omar, Aissam & Bouzekri, Hicham, 2024. "Contribution of green hydrogen vector to guarantee electricity feeding in remote areas- Case study," Renewable Energy, Elsevier, vol. 222(C).
    10. Chen, Bin & Xu, Haoran & Ni, Meng, 2017. "Modelling of SOEC-FT reactor: Pressure effects on methanation process," Applied Energy, Elsevier, vol. 185(P1), pages 814-824.
    11. Park, Jinwoo & You, Fengqi & Cho, Hyungtae & Lee, Inkyu & Moon, Il, 2020. "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 195(C).
    12. Reznicek, Evan P. & Braun, Robert J., 2020. "Reversible solid oxide cell systems for integration with natural gas pipeline and carbon capture infrastructure for grid energy management," Applied Energy, Elsevier, vol. 259(C).
    13. Zhang, Yongliang & Han, Minfang, 2019. "Energy storage and syngas production by switching cathode gas in nickel-yttria stabilized zirconia supported solid oxide cell," Applied Energy, Elsevier, vol. 241(C), pages 1-10.
    14. D.F. Chuahy, Flavio & Kokjohn, Sage L., 2017. "Effects of reformed fuel composition in “single” fuel reactivity controlled compression ignition combustion," Applied Energy, Elsevier, vol. 208(C), pages 1-11.
    15. Marco Sorrentino & Antonio Adamo & Gianmarco Nappi, 2019. "Self-Sufficient and Islanded-Oriented Design of a Reversible Solid Oxide Cell-Based Renewable Microgrid," Energies, MDPI, vol. 12(17), pages 1-15, August.
    16. Preininger, Michael & Stoeckl, Bernhard & Subotić, Vanja & Mittmann, Frank & Hochenauer, Christoph, 2019. "Performance of a ten-layer reversible Solid Oxide Cell stack (rSOC) under transient operation for autonomous application," Applied Energy, Elsevier, vol. 254(C).
    17. Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program," Applied Energy, Elsevier, vol. 187(C), pages 449-464.
    18. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    19. Ding, Xiaoyi & Sun, Wei & Harrison, Gareth P. & Lv, Xiaojing & Weng, Yiwu, 2020. "Multi-objective optimization for an integrated renewable, power-to-gas and solid oxide fuel cell/gas turbine hybrid system in microgrid," Energy, Elsevier, vol. 213(C).
    20. Gençer, Emre & Agrawal, Rakesh, 2016. "A commentary on the US policies for efficient large scale renewable energy storage systems: Focus on carbon storage cycles," Energy Policy, Elsevier, vol. 88(C), pages 477-484.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:278:y:2020:i:c:s0306261920311272. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.