IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v277y2020ics0306261920311296.html
   My bibliography  Save this article

An analytical study of the nocturnal radiative cooling potential of typical photovoltaic/thermal module

Author

Listed:
  • Hu, Mingke
  • Zhao, Bin
  • Ao, Xianze
  • Suhendri,
  • Cao, Jingyu
  • Wang, Qiliang
  • Riffat, Saffa
  • Su, Yuehong
  • Pei, Gang

Abstract

Radiative cooling (RC) sees great developments in recent years due to its unique feature of sending waste heat to the cold universe without any additional energy consumption, which is extensively proved in many application scenarios, including its integration into solar installations. The comprehensive solar photovoltaic/thermal (PV/T) technology is becoming popular due to its multi-function and high overall efficiency. The integration of RC into a PV/T collector can further contribute to such merits by adding a night sky cooling function, so a PV/T-RC collector can produce electricity and heat during the daytime and provide cooling energy during the nighttime. Without any structural modification, a flat-plate PV/T collector with a typical glass cover is confirmed to be able to realize a good radiative cooling in the present study. A mathematic model for the nighttime performance evaluation of a typical PV/T module was developed to characterize the nocturnal cooling capacity of the module. Results suggest that the absorber plate can be cooled to nearly 9.5 °C below the ambient air over a consecutive five hours nighttime period. Further parametric studies were carried out to investigate the effect of some key structural and environmental parameters on the radiative cooling performance of the PV/T module. Under some favorable radiative cooling conditions, the absorber plate can realize a stagnation temperature of nearly 11 °C lower than the ambient temperature and reach a maximum cooling power of over 50 W/m2.

Suggested Citation

  • Hu, Mingke & Zhao, Bin & Ao, Xianze & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2020. "An analytical study of the nocturnal radiative cooling potential of typical photovoltaic/thermal module," Applied Energy, Elsevier, vol. 277(C).
  • Handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311296
    DOI: 10.1016/j.apenergy.2020.115625
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920311296
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yong, Cui & Yiping, Wang & Li, Zhu, 2015. "Performance analysis on a building-integrated solar heating and cooling panel," Renewable Energy, Elsevier, vol. 74(C), pages 627-632.
    2. Liang, Ruobing & Zhou, Chao & Zhang, Jili & Chen, Jianquan & Riaz, Ahmad, 2020. "Characteristics analysis of the photovoltaic thermal heat pump system on refrigeration mode: An experimental investigation," Renewable Energy, Elsevier, vol. 146(C), pages 2450-2461.
    3. Guo, Chao & Ji, Jie & Sun, Wei & Ma, Jinwei & He, Wei & Wang, Yanqiu, 2015. "Numerical simulation and experimental validation of tri-functional photovoltaic/thermal solar collector," Energy, Elsevier, vol. 87(C), pages 470-480.
    4. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Jiao, Dongsheng & Pei, Gang, 2019. "Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    5. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Wang, Yunyun & Pei, Gang, 2018. "Comparative analysis of different surfaces for integrated solar heating and radiative cooling: A numerical study," Energy, Elsevier, vol. 155(C), pages 360-369.
    6. Allouhi, A. & Benzakour Amine, M. & Buker, M.S. & Kousksou, T. & Jamil, A., 2019. "Forced-circulation solar water heating system using heat pipe-flat plate collectors: Energy and exergy analysis," Energy, Elsevier, vol. 180(C), pages 429-443.
    7. Liu, Junwei & Zhou, Zhihua & Zhang, Debao & Jiao, Shifei & Zhang, Ying & Luo, Longfei & Zhang, Zhuofen & Gao, Feng, 2020. "Field investigation and performance evaluation of sub-ambient radiative cooling in low latitude seaside," Renewable Energy, Elsevier, vol. 155(C), pages 90-99.
    8. Karki, Saroj & Haapala, Karl R. & Fronk, Brian M., 2019. "Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers," Applied Energy, Elsevier, vol. 254(C).
    9. Hu, Mingke & Pei, Gang & Wang, Qiliang & Li, Jing & Wang, Yunyun & Ji, Jie, 2016. "Field test and preliminary analysis of a combined diurnal solar heating and nocturnal radiative cooling system," Applied Energy, Elsevier, vol. 179(C), pages 899-908.
    10. Zhao, Bin & Hu, Mingke & Ao, Xianze & Pei, Gang, 2017. "Conceptual development of a building-integrated photovoltaic–radiative cooling system and preliminary performance analysis in Eastern China," Applied Energy, Elsevier, vol. 205(C), pages 626-634.
    11. Hu, Mingke & Zhao, Bin & Ao, Xianze & Ren, Xiao & Cao, Jingyu & Wang, Qiliang & Su, Yuehong & Pei, Gang, 2020. "Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling," Applied Energy, Elsevier, vol. 260(C).
    12. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    13. Bempah, Kwabena Opoku & Kwon, Kyoungjun & Kim, Katherine A., 2019. "Experimental study of photovoltaic panel mounting configurations for tube-shaped structures," Applied Energy, Elsevier, vol. 240(C), pages 754-765.
    14. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    15. Zhang, Kai & Zhao, Dongliang & Yin, Xiaobo & Yang, Ronggui & Tan, Gang, 2018. "Energy saving and economic analysis of a new hybrid radiative cooling system for single-family houses in the USA," Applied Energy, Elsevier, vol. 224(C), pages 371-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Feng, Chi & Lei, Yue & Huang, Xianqi & Zhang, Weidong & Feng, Ya & Zheng, Xing, 2022. "Experimental and theoretical analysis of sub-ambient cooling with longwave radiative coating," Renewable Energy, Elsevier, vol. 193(C), pages 634-644.
    2. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    3. Nižetić, Sandro & Jurčević, Mišo & Čoko, Duje & Arıcı, Müslüm, 2021. "A novel and effective passive cooling strategy for photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Hu, Mingke & Guo, Chao & Zhao, Bin & Ao, Xianze & Suhendri, & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2021. "A parametric study on the performance characteristics of an evacuated flat-plate photovoltaic/thermal (PV/T) collector," Renewable Energy, Elsevier, vol. 167(C), pages 884-898.
    5. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    6. Ma, Y. & Tao, Y. & Deng, D.L. & Wang, Y. & Tu, J.Y., 2024. "Experimental and numerical investigation on the charging and discharging process of a cold energy storage for space cooling of buildings," Renewable Energy, Elsevier, vol. 222(C).
    7. Jiang, L. & Liu, W. & Lin, Y.C. & Wang, R.Q. & Zhang, X.J. & Hu, M.K., 2022. "Hybrid thermochemical sorption seasonal storage for ultra-low temperature solar energy utilization," Energy, Elsevier, vol. 239(PB).
    8. Kiyaee, Soroush & Khalilmoghadam, Pooria & Behshad Shafii, Mohammad & Moshfegh, Alireza Z. & Hu, Mingke, 2022. "Investigation of a radiative sky cooling module using phase change material as the energy storage," Applied Energy, Elsevier, vol. 321(C).
    9. Yu, Li & Xi, Zhiyuan & Li, Shuang & Pang, Dan & Yan, Hongjie & Chen, Meijie, 2022. "All-day continuous electrical power generator by solar heating and radiative cooling from the sky," Applied Energy, Elsevier, vol. 322(C).
    10. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Marco Noro & Simone Mancin & Roger Riehl, 2021. "Energy and Economic Sustainability of a Trigeneration Solar System Using Radiative Cooling in Mediterranean Climate," Sustainability, MDPI, vol. 13(20), pages 1-18, October.
    3. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Pei, Gang, 2018. "Parametric analysis and annual performance evaluation of an air-based integrated solar heating and radiative cooling collector," Energy, Elsevier, vol. 165(PA), pages 811-824.
    4. Hu, Mingke & Zhao, Bin & Ao, Xianze & Ren, Xiao & Cao, Jingyu & Wang, Qiliang & Su, Yuehong & Pei, Gang, 2020. "Performance assessment of a trifunctional system integrating solar PV, solar thermal, and radiative sky cooling," Applied Energy, Elsevier, vol. 260(C).
    5. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Xuan, Qingdong & Jiao, Dongsheng & Pei, Gang, 2019. "Performance analysis of a hybrid system combining photovoltaic and nighttime radiative cooling," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    6. Zhao, Bin & Hu, Mingke & Ao, Xianze & Chen, Nuo & Pei, Gang, 2019. "Radiative cooling: A review of fundamentals, materials, applications, and prospects," Applied Energy, Elsevier, vol. 236(C), pages 489-513.
    7. Hu, Mingke & Zhao, Bin & Ao, Xianze & Feng, Junsheng & Cao, Jingyu & Su, Yuehong & Pei, Gang, 2019. "Experimental study on a hybrid photo-thermal and radiative cooling collector using black acrylic paint as the panel coating," Renewable Energy, Elsevier, vol. 139(C), pages 1217-1226.
    8. Yu, Li & Xi, Zhiyuan & Li, Shuang & Pang, Dan & Yan, Hongjie & Chen, Meijie, 2022. "All-day continuous electrical power generator by solar heating and radiative cooling from the sky," Applied Energy, Elsevier, vol. 322(C).
    9. Kiyaee, Soroush & Khalilmoghadam, Pooria & Behshad Shafii, Mohammad & Moshfegh, Alireza Z. & Hu, Mingke, 2022. "Investigation of a radiative sky cooling module using phase change material as the energy storage," Applied Energy, Elsevier, vol. 321(C).
    10. Bu, Fan & Yan, Da & Tan, Gang & Sun, Hongsan & An, Jingjing, 2022. "Systematically incorporating spectrum-selective radiative cooling into building performance simulation: Numerical integration method and experimental validation," Applied Energy, Elsevier, vol. 312(C).
    11. Pirvaram, Atousa & Talebzadeh, Nima & Leung, Siu Ning & O'Brien, Paul G., 2022. "Radiative cooling for buildings: A review of techno-enviro-economics and life-cycle assessment methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    12. Zhang, Ji & Yuan, Jianjuan & Liu, Junwei & Zhou, Zhihua & Sui, Jiyuan & Xing, Jincheng & Zuo, Jian, 2021. "Cover shields for sub-ambient radiative cooling: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Wang, Cun-Hai & Chen, Hao & Jiang, Ze-Yi & Zhang, Xin-Xin & Wang, Fu-Qiang, 2023. "Modelling and performance evaluation of a novel passive thermoelectric system based on radiative cooling and solar heating for 24-hour power-generation," Applied Energy, Elsevier, vol. 331(C).
    14. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    15. Cairui Yu & Dongmei Shen & Qingyang Jiang & Wei He & Hancheng Yu & Zhongting Hu & Hongbing Chen & Pengkun Yu & Sheng Zhang, 2019. "Numerical and Experimental Study on the Heat Dissipation Performance of a Novel System," Energies, MDPI, vol. 13(1), pages 1-26, December.
    16. Yan, Tian & Xu, Dawei & Meng, Jing & Xu, Xinhua & Yu, Zhongyi & Wu, Huijun, 2024. "A review of radiative sky cooling technology and its application in building systems," Renewable Energy, Elsevier, vol. 220(C).
    17. Vall, Sergi & Johannes, Kévyn & David, Damien & Castell, Albert, 2020. "A new flat-plate radiative cooling and solar collector numerical model: Evaluation and metamodeling," Energy, Elsevier, vol. 202(C).
    18. Hu, Mingke & Zhao, Bin & Ao, Xianze & Su, Yuehong & Wang, Yunyun & Pei, Gang, 2018. "Comparative analysis of different surfaces for integrated solar heating and radiative cooling: A numerical study," Energy, Elsevier, vol. 155(C), pages 360-369.
    19. Zhao, Bin & Hu, Mingke & Ao, Xianze & Huang, Xiaona & Ren, Xiao & Pei, Gang, 2019. "Conventional photovoltaic panel for nocturnal radiative cooling and preliminary performance analysis," Energy, Elsevier, vol. 175(C), pages 677-686.
    20. Feng, Chi & Lei, Yue & Huang, Xianqi & Zhang, Weidong & Feng, Ya & Zheng, Xing, 2022. "Experimental and theoretical analysis of sub-ambient cooling with longwave radiative coating," Renewable Energy, Elsevier, vol. 193(C), pages 634-644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:277:y:2020:i:c:s0306261920311296. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.