IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v264y2020ics0306261920301483.html
   My bibliography  Save this article

Neural-network-based Lagrange multiplier selection for distributed demand response in smart grid

Author

Listed:
  • Ruan, Guangchun
  • Zhong, Haiwang
  • Wang, Jianxiao
  • Xia, Qing
  • Kang, Chongqing

Abstract

As a general difficult problem, the slow convergence of existing distributed demand response methods greatly hinders the reliable applications in smart grid. To overcome this problem, this paper proposes a new distributed method, namely the neural-network-based Lagrange multiplier selection (NN-LMS), to prominently reduce the iterations and avoid an oscillation. The key improvement lies in the forecast strategy of a load serving entity (LSE), who applies a specially designed neural network to capture the users’ price response features. A novel Lagrange multiplier selection model, the NN-LMS model, is formulated to optimize the iterative step sizes. This complex model is then solved by a two-stage NN-LMS algorithm, containing the interval bisection method and improved sensitivity method in the first and second stages, respectively. In addition, the data selection, batch normalization and additional network are applied to boost the performance of neural networks. Case studies validate the optimality, improved convergence and numerical stability of the proposed method, and demonstrate its great potential in distributed demand response and other smart grid applications.

Suggested Citation

  • Ruan, Guangchun & Zhong, Haiwang & Wang, Jianxiao & Xia, Qing & Kang, Chongqing, 2020. "Neural-network-based Lagrange multiplier selection for distributed demand response in smart grid," Applied Energy, Elsevier, vol. 264(C).
  • Handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920301483
    DOI: 10.1016/j.apenergy.2020.114636
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920301483
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114636?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2016. "Power demand control scenarios for smart grid applications with finite number of appliances," Applied Energy, Elsevier, vol. 162(C), pages 83-98.
    2. Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
    3. Marzband, Mousa & Ghadimi, Majid & Sumper, Andreas & Domínguez-García, José Luis, 2014. "Experimental validation of a real-time energy management system using multi-period gravitational search algorithm for microgrids in islanded mode," Applied Energy, Elsevier, vol. 128(C), pages 164-174.
    4. Pallonetto, Fabiano & De Rosa, Mattia & Milano, Federico & Finn, Donal P., 2019. "Demand response algorithms for smart-grid ready residential buildings using machine learning models," Applied Energy, Elsevier, vol. 239(C), pages 1265-1282.
    5. O׳Connell, Niamh & Pinson, Pierre & Madsen, Henrik & O׳Malley, Mark, 2014. "Benefits and challenges of electrical demand response: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 686-699.
    6. Wang, Qi & Zhang, Chunyu & Ding, Yi & Xydis, George & Wang, Jianhui & Østergaard, Jacob, 2015. "Review of real-time electricity markets for integrating Distributed Energy Resources and Demand Response," Applied Energy, Elsevier, vol. 138(C), pages 695-706.
    7. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Demand response in smart electricity grids equipped with renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 64-72.
    8. Xiong, Yingqi & Wang, Bin & Chu, Chi-cheng & Gadh, Rajit, 2018. "Vehicle grid integration for demand response with mixture user model and decentralized optimization," Applied Energy, Elsevier, vol. 231(C), pages 481-493.
    9. Wang, Jianxiao & Zhong, Haiwang & Lai, Xiaowen & Xia, Qing & Shu, Chang & Kang, Chongqing, 2017. "Distributed real-time demand response based on Lagrangian multiplier optimal selection approach," Applied Energy, Elsevier, vol. 190(C), pages 949-959.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tsaousoglou, Georgios & Ellinas, Petros & Varvarigos, Emmanouel, 2023. "Operating peer-to-peer electricity markets under uncertainty via learning-based, distributed optimal control," Applied Energy, Elsevier, vol. 343(C).
    2. Sun, Fangyuan & Kong, Xiangyu & Wu, Jianzhong & Gao, Bixuan & Chen, Ke & Lu, Ning, 2022. "DSM pricing method based on A3C and LSTM under cloud-edge environment," Applied Energy, Elsevier, vol. 315(C).
    3. Zheng, Ling & Zhou, Bin & Cao, Yijia & Wing Or, Siu & Li, Yong & Wing Chan, Ka, 2022. "Hierarchical distributed multi-energy demand response for coordinated operation of building clusters," Applied Energy, Elsevier, vol. 308(C).
    4. Zhang, Yijie & Ma, Tao & Yang, Hongxing, 2022. "Grid-connected photovoltaic battery systems: A comprehensive review and perspectives," Applied Energy, Elsevier, vol. 328(C).
    5. Huo, Yuchong & Bouffard, François & Joós, Géza, 2022. "Integrating learning and explicit model predictive control for unit commitment in microgrids," Applied Energy, Elsevier, vol. 306(PA).
    6. Tan, Caixia & Wang, Jing & Geng, Shiping & Pu, Lei & Tan, Zhongfu, 2021. "Three-level market optimization model of virtual power plant with carbon capture equipment considering copula–CVaR theory," Energy, Elsevier, vol. 237(C).
    7. Wu, Kunming & Li, Qiang & Chen, Ziyu & Lin, Jiayang & Yi, Yongli & Chen, Minyou, 2021. "Distributed optimization method with weighted gradients for economic dispatch problem of multi-microgrid systems," Energy, Elsevier, vol. 222(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    2. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    3. Zehir, Mustafa Alparslan & Batman, Alp & Bagriyanik, Mustafa, 2016. "Review and comparison of demand response options for more effective use of renewable energy at consumer level," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 631-642.
    4. Alasseri, Rajeev & Tripathi, Ashish & Joji Rao, T. & Sreekanth, K.J., 2017. "A review on implementation strategies for demand side management (DSM) in Kuwait through incentive-based demand response programs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 617-635.
    5. Lund, Peter D. & Lindgren, Juuso & Mikkola, Jani & Salpakari, Jyri, 2015. "Review of energy system flexibility measures to enable high levels of variable renewable electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 785-807.
    6. Behboodi, Sahand & Chassin, David P. & Crawford, Curran & Djilali, Ned, 2016. "Renewable resources portfolio optimization in the presence of demand response," Applied Energy, Elsevier, vol. 162(C), pages 139-148.
    7. Ribó-Pérez, D. & Carrión, A. & Rodríguez García, J. & Álvarez Bel, C., 2021. "Ex-post evaluation of Interruptible Load programs with a system optimisation perspective," Applied Energy, Elsevier, vol. 303(C).
    8. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    9. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    10. Neda Hajibandeh & Mehdi Ehsan & Soodabeh Soleymani & Miadreza Shafie-khah & João P. S. Catalão, 2017. "The Mutual Impact of Demand Response Programs and Renewable Energies: A Survey," Energies, MDPI, vol. 10(9), pages 1-18, September.
    11. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    12. Cai, Qiran & Xu, Qingyang & Qing, Jing & Shi, Gang & Liang, Qiao-Mei, 2022. "Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities," Energy, Elsevier, vol. 261(PB).
    13. Paterakis, Nikolaos G. & Erdinç, Ozan & Catalão, João P.S., 2017. "An overview of Demand Response: Key-elements and international experience," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 871-891.
    14. Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
    15. Das, Laya & Garg, Dinesh & Srinivasan, Babji, 2020. "NeuralCompression: A machine learning approach to compress high frequency measurements in smart grid," Applied Energy, Elsevier, vol. 257(C).
    16. da Fonseca, André L.A. & Chvatal, Karin M.S. & Fernandes, Ricardo A.S., 2021. "Thermal comfort maintenance in demand response programs: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    17. Hou, Lingxi & Li, Weiqi & Zhou, Kui & Jiang, Qirong, 2019. "Integrating flexible demand response toward available transfer capability enhancement," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Abdi, Hamdi & Beigvand, Soheil Derafshi & Scala, Massimo La, 2017. "A review of optimal power flow studies applied to smart grids and microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 742-766.
    19. Mimica, Marko & Dominković, Dominik Franjo & Capuder, Tomislav & Krajačić, Goran, 2021. "On the value and potential of demand response in the smart island archipelago," Renewable Energy, Elsevier, vol. 176(C), pages 153-168.
    20. Yamashita, Daniela Yassuda & Vechiu, Ionel & Gaubert, Jean-Paul, 2020. "A review of hierarchical control for building microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:264:y:2020:i:c:s0306261920301483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.