IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v128y2019icp685-696.html
   My bibliography  Save this article

Value of energy storage aggregation to the electricity system

Author

Listed:
  • Castagneto Gissey, Giorgio
  • Subkhankulova, Dina
  • Dodds, Paul E.
  • Barrett, Mark

Abstract

Energy storage offers the flexibility needed to integrate renewable generation into electricity systems. One decentralized option is to install battery packs in homes and offices. Yet storage owners might operate their device autonomously to minimize their own electricity costs, but this could be inefficient from a wider electricity system perspective. Using a novel agent-based power system model, ESMA, we explore the economic trade-offs of aggregator-led (centralized) and consumer-led (decentralized) coordination in the UK over the period 2015–2040. We consider the deployment of storage in the domestic, commercial and industrial sectors.

Suggested Citation

  • Castagneto Gissey, Giorgio & Subkhankulova, Dina & Dodds, Paul E. & Barrett, Mark, 2019. "Value of energy storage aggregation to the electricity system," Energy Policy, Elsevier, vol. 128(C), pages 685-696.
  • Handle: RePEc:eee:enepol:v:128:y:2019:i:c:p:685-696
    DOI: 10.1016/j.enpol.2019.01.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519300655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.01.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burger, Scott & Chaves-Ávila, Jose Pablo & Batlle, Carlos & Pérez-Arriaga, Ignacio J., 2017. "A review of the value of aggregators in electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 395-405.
    2. O. Schmidt & A. Hawkes & A. Gambhir & I. Staffell, 2017. "The future cost of electrical energy storage based on experience rates," Nature Energy, Nature, vol. 2(8), pages 1-8, August.
    3. Boait, P.J. & Rylatt, R.M. & Wright, A., 2007. "Exergy-based control of electricity demand and microgeneration," Applied Energy, Elsevier, vol. 84(3), pages 239-253, March.
    4. Walawalkar, Rahul & Apt, Jay & Mancini, Rick, 2007. "Economics of electric energy storage for energy arbitrage and regulation in New York," Energy Policy, Elsevier, vol. 35(4), pages 2558-2568, April.
    5. Niesten, Eva & Alkemade, Floortje, 2016. "How is value created and captured in smart grids? A review of the literature and an analysis of pilot projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 629-638.
    6. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    7. Severin Borenstein, 2017. "Private Net Benefits of Residential Solar PV: The Role of Electricity Tariffs, Tax Incentives, and Rebates," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 85-122.
    8. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    9. Greenblatt, Jeffery B. & Succar, Samir & Denkenberger, David C. & Williams, Robert H. & Socolow, Robert H., 2007. "Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation," Energy Policy, Elsevier, vol. 35(3), pages 1474-1492, March.
    10. Calvillo, C.F. & Sánchez-Miralles, A. & Villar, J. & Martín, F., 2016. "Optimal planning and operation of aggregated distributed energy resources with market participation," Applied Energy, Elsevier, vol. 182(C), pages 340-357.
    11. Basak, Prasenjit & Chowdhury, S. & Halder nee Dey, S. & Chowdhury, S.P., 2012. "A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5545-5556.
    12. Katz, Michael L & Shapiro, Carl, 1985. "Network Externalities, Competition, and Compatibility," American Economic Review, American Economic Association, vol. 75(3), pages 424-440, June.
    13. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in electric power systems utilizing energy storage and other enabling technologies," Energy Policy, Elsevier, vol. 35(9), pages 4424-4433, September.
    14. Denholm, Paul & Sioshansi, Ramteen, 2009. "The value of compressed air energy storage with wind in transmission-constrained electric power systems," Energy Policy, Elsevier, vol. 37(8), pages 3149-3158, August.
    15. Marzband, Mousa & Sumper, Andreas & Ruiz-Álvarez, Albert & Domínguez-García, José Luis & Tomoiagă, Bogdan, 2013. "Experimental evaluation of a real time energy management system for stand-alone microgrids in day-ahead markets," Applied Energy, Elsevier, vol. 106(C), pages 365-376.
    16. Denholm, Paul & Margolis, Robert M., 2007. "Evaluating the limits of solar photovoltaics (PV) in traditional electric power systems," Energy Policy, Elsevier, vol. 35(5), pages 2852-2861, May.
    17. Barbour, Edward & Wilson, I.A. Grant & Radcliffe, Jonathan & Ding, Yulong & Li, Yongliang, 2016. "A review of pumped hydro energy storage development in significant international electricity markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 421-432.
    18. Basu, Ashoke Kumar & Chowdhury, S.P. & Chowdhury, S. & Paul, S., 2011. "Microgrids: Energy management by strategic deployment of DERs—A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4348-4356.
    19. Baker, John, 2008. "New technology and possible advances in energy storage," Energy Policy, Elsevier, vol. 36(12), pages 4368-4373, December.
    20. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Demand response in smart electricity grids equipped with renewable energy sources: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 64-72.
    21. Ghasemi, Ahmad & Mortazavi, Seyed Saeidollah & Mashhour, Elaheh, 2016. "Hourly demand response and battery energy storage for imbalance reduction of smart distribution company embedded with electric vehicles and wind farms," Renewable Energy, Elsevier, vol. 85(C), pages 124-136.
    22. Fais, Birgit & Sabio, Nagore & Strachan, Neil, 2016. "The critical role of the industrial sector in reaching long-term emission reduction, energy efficiency and renewable targets," Applied Energy, Elsevier, vol. 162(C), pages 699-712.
    23. Wade, N.S. & Taylor, P.C. & Lang, P.D. & Jones, P.R., 2010. "Evaluating the benefits of an electrical energy storage system in a future smart grid," Energy Policy, Elsevier, vol. 38(11), pages 7180-7188, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mehigan, L. & Ó Gallachóir, Brian & Deane, Paul, 2022. "Batteries and interconnection: Competing or complementary roles in the decarbonisation of the European power system?," Renewable Energy, Elsevier, vol. 196(C), pages 1229-1240.
    2. Giarola, Sara & Molar-Cruz, Anahi & Vaillancourt, Kathleen & Bahn, Olivier & Sarmiento, Luis & Hawkes, Adam & Brown, Maxwell, 2021. "The role of energy storage in the uptake of renewable energy: A model comparison approach," Energy Policy, Elsevier, vol. 151(C).
    3. Steffen S. Bettin, 2020. "Electricity infrastructure and innovation in the next phase of energy transition—amendments to the technology innovation system framework," Review of Evolutionary Political Economy, Springer, vol. 1(3), pages 371-395, November.
    4. Wesseh, Presley K. & Lin, Boqiang, 2021. "Bulk storage technologies in imperfect electricity markets under time-of-use pricing: Implications for the environment and social welfare," Technological Forecasting and Social Change, Elsevier, vol. 171(C).
    5. F. Ignacio Aguilar & Robert B. Gibson, 2023. "Advancing a New Generation of Sustainability-Based Assessments for Electrical Energy Systems: Ontario as an Illustrative Application—A Review," Energies, MDPI, vol. 16(17), pages 1-26, August.
    6. Xiong, Bobby & Predel, Johannes & Crespo del Granado, Pedro & Egging-Bratseth, Ruud, 2021. "Spatial flexibility in redispatch: Supporting low carbon energy systems with Power-to-Gas," Applied Energy, Elsevier, vol. 283(C).
    7. Tómasson, Egill & Hesamzadeh, Mohammad Reza & Wolak, Frank A., 2020. "Optimal offer-bid strategy of an energy storage portfolio: A linear quasi-relaxation approach," Applied Energy, Elsevier, vol. 260(C).
    8. Seong-Hyeon Cha & Sun-Hyeok Kwak & Woong Ko, 2023. "A Robust Optimization Model of Aggregated Resources Considering Serving Ratio for Providing Reserve Power in the Joint Electricity Market," Energies, MDPI, vol. 16(20), pages 1-27, October.
    9. Kuznetsov, G.V. & Malyshev, D. Yu & Kostoreva, Zh.A. & Syrodoy, S.V. & Gutareva, N. Yu., 2020. "The ignition of the bio water-coal fuel particles based on coals of different degree metamorphism," Energy, Elsevier, vol. 201(C).
    10. Zakeri, Behnam & Gissey, Giorgio Castagneto & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Centralized vs. distributed energy storage – Benefits for residential users," Energy, Elsevier, vol. 236(C).
    11. Castagneto Gissey, Giorgio & Zakeri, Behnam & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Evaluating consumer investments in distributed energy technologies," Energy Policy, Elsevier, vol. 149(C).
    12. Varela Soares, Ian & Mauger, Romain & Santos, Thauan, 2023. "Considerations for benefit stacking policies in the EU electricity storage market," Energy Policy, Elsevier, vol. 172(C).
    13. Ding, Zhetong & Li, Yaping & Zhang, Kaifeng & Peng, Jimmy Chih-Hsien, 2024. "Two-stage dynamic aggregation involving flexible resource composition and coordination based on submodular optimization," Applied Energy, Elsevier, vol. 360(C).
    14. Zakeri, Behnam & Cross, Samuel & Dodds, Paul.E. & Gissey, Giorgio Castagneto, 2021. "Policy options for enhancing economic profitability of residential solar photovoltaic with battery energy storage," Applied Energy, Elsevier, vol. 290(C).
    15. Familia, Thomas & Horne, Christine, 2022. "Customer trust in their utility company and interest in household-level battery storage," Applied Energy, Elsevier, vol. 324(C).
    16. Ahmed Gailani & Tracey Crosbie & Maher Al-Greer & Michael Short & Nashwan Dawood, 2020. "On the Role of Regulatory Policy on the Business Case for Energy Storage in Both EU and UK Energy Systems: Barriers and Enablers," Energies, MDPI, vol. 13(5), pages 1-20, March.
    17. Bernhard Faessler, 2021. "Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review," Energies, MDPI, vol. 14(8), pages 1-19, April.
    18. István G. Balázs & Attila Fodor & Attila Magyar, 2021. "Quantification of the Flexibility of Residential Prosumers," Energies, MDPI, vol. 14(16), pages 1-21, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    2. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Moreno, Fermín & Martínez-Val, José M., 2011. "Collateral effects of renewable energies deployment in Spain: Impact on thermal power plants performance and management," Energy Policy, Elsevier, vol. 39(10), pages 6561-6574, October.
    4. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    5. Zakeri, Behnam & Gissey, Giorgio Castagneto & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Centralized vs. distributed energy storage – Benefits for residential users," Energy, Elsevier, vol. 236(C).
    6. Denholm, Paul & Sioshansi, Ramteen, 2009. "The value of compressed air energy storage with wind in transmission-constrained electric power systems," Energy Policy, Elsevier, vol. 37(8), pages 3149-3158, August.
    7. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    8. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.
    9. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    10. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas, 2011. "A comparative analysis of the value of pure and hybrid electricity storage," Energy Economics, Elsevier, vol. 33(1), pages 56-66, January.
    11. He, Xian & Delarue, Erik & D'haeseleer, William & Glachant, Jean-Michel, 2011. "A novel business model for aggregating the values of electricity storage," Energy Policy, Elsevier, vol. 39(3), pages 1575-1585, March.
    12. Chyong, Chi Kong & Newbery, David, 2022. "A unit commitment and economic dispatch model of the GB electricity market – Formulation and application to hydro pumped storage," Energy Policy, Elsevier, vol. 170(C).
    13. Carson, Richard T. & Novan, Kevin, 2013. "The private and social economics of bulk electricity storage," Journal of Environmental Economics and Management, Elsevier, vol. 66(3), pages 404-423.
    14. Yu, Nanpeng & Foggo, Brandon, 2017. "Stochastic valuation of energy storage in wholesale power markets," Energy Economics, Elsevier, vol. 64(C), pages 177-185.
    15. Castagneto Gissey, Giorgio & Zakeri, Behnam & Dodds, Paul E. & Subkhankulova, Dina, 2021. "Evaluating consumer investments in distributed energy technologies," Energy Policy, Elsevier, vol. 149(C).
    16. Berrada, Asmae & Loudiyi, Khalid & Zorkani, Izeddine, 2016. "Valuation of energy storage in energy and regulation markets," Energy, Elsevier, vol. 115(P1), pages 1109-1118.
    17. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    18. Drury, Easan & Denholm, Paul & Sioshansi, Ramteen, 2011. "The value of compressed air energy storage in energy and reserve markets," Energy, Elsevier, vol. 36(8), pages 4959-4973.
    19. Daniel R. Jiang & Warren B. Powell, 2015. "Optimal Hour-Ahead Bidding in the Real-Time Electricity Market with Battery Storage Using Approximate Dynamic Programming," INFORMS Journal on Computing, INFORMS, vol. 27(3), pages 525-543, August.
    20. Burger, Scott & Chaves-Ávila, Jose Pablo & Batlle, Carlos & Pérez-Arriaga, Ignacio J., 2017. "A review of the value of aggregators in electricity systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 395-405.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:128:y:2019:i:c:p:685-696. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.