IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v256y2019ics0306261919316198.html
   My bibliography  Save this article

A Monte Carlo-based framework for assessing the value of information and development risk in geothermal exploration

Author

Listed:
  • Athens, Noah D.
  • Caers, Jef K.

Abstract

The exploration and development of geothermal energy resources carries considerable financial risk. Due to the cost of drilling, there is often large uncertainty in the prediction of resource potential as well as challenges in optimizing well placement. In this paper, we propose a comprehensive Bayesian framework that accounts for high degrees of geologic uncertainty. Although Bayesian inference methods for prediction and uncertainty quantification are well-established, limitations exist, such as incorporating model realism and reducing the computational burden of simulating a large number of forward models. Using a case study problem, we demonstrate how to turn geologic understanding into a prior probability model for a basin-scale extensional geothermal system. We then use the proposed Bayesian framework, called Bayesian Evidential Learning, to generate posterior temperature predictions constrained to a temperature well without any explicit model inversion. In this approach, the relationship between data and prediction variables is learned by Canonical Correlation Analysis of a training set of models generated by Monte Carlo simulation. Sensitivity analysis results show that temperature in a geothermal target area is most sensitive to the bulk permeability of the basement and basin rock as well as the basal heat flux.

Suggested Citation

  • Athens, Noah D. & Caers, Jef K., 2019. "A Monte Carlo-based framework for assessing the value of information and development risk in geothermal exploration," Applied Energy, Elsevier, vol. 256(C).
  • Handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316198
    DOI: 10.1016/j.apenergy.2019.113932
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919316198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Franco, Alessandro & Vaccaro, Maurizio, 2014. "Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 987-1002.
    2. Tüfekçi, Nesrin & Lütfi Süzen, M. & Güleç, Nilgün, 2010. "GIS based geothermal potential assessment: A case study from Western Anatolia, Turkey," Energy, Elsevier, vol. 35(1), pages 246-261.
    3. Chen, Mingjie & Tompson, Andrew F.B. & Mellors, Robert J. & Ramirez, Abelardo L. & Dyer, Kathleen M. & Yang, Xianjin & Wagoner, Jeffrey L., 2014. "An efficient Bayesian inversion of a geothermal prospect using a multivariate adaptive regression spline method," Applied Energy, Elsevier, vol. 136(C), pages 619-627.
    4. Marco Ratto, 2008. "Analysing DSGE Models with Global Sensitivity Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 31(2), pages 115-139, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Ma, Xinhua & Zhu, Weiping & Zheng, Tianyu & Wu, Keliu & Zhang, Kun & Ma, Kuiyou, 2020. "Improved methods for determining effective sandstone reservoirs and evaluating hydrocarbon enrichment in petroliferous basins," Applied Energy, Elsevier, vol. 261(C).
    2. Wang, Gaosheng & Song, Xianzhi & Yu, Chao & Shi, Yu & Song, Guofeng & Xu, Fuqiang & Ji, Jiayan & Song, Zihao, 2022. "Heat extraction study of a novel hydrothermal open-loop geothermal system in a multi-lateral horizontal well," Energy, Elsevier, vol. 242(C).
    3. Mafalda M. Miranda & Jasmin Raymond & Chrystel Dezayes, 2020. "Uncertainty and Risk Evaluation of Deep Geothermal Energy Source for Heat Production and Electricity Generation in Remote Northern Regions," Energies, MDPI, vol. 13(16), pages 1-35, August.
    4. Amine Tadjer & Reidar B. Bratvold, 2021. "Managing Uncertainty in Geological CO 2 Storage Using Bayesian Evidential Learning," Energies, MDPI, vol. 14(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pye, Steve & Sabio, Nagore & Strachan, Neil, 2015. "An integrated systematic analysis of uncertainties in UK energy transition pathways," Energy Policy, Elsevier, vol. 87(C), pages 673-684.
    2. Cristiano Cantore & Filippo Ferroni & Miguel León-Ledesma, 2021. "The Missing Link: Monetary Policy and The Labor Share," Journal of the European Economic Association, European Economic Association, vol. 19(3), pages 1592-1620.
    3. Daniel Harenberg & Stefano Marelli & Bruno Sudret & Viktor Winschel, 2019. "Uncertainty quantification and global sensitivity analysis for economic models," Quantitative Economics, Econometric Society, vol. 10(1), pages 1-41, January.
    4. DJINKPO, Medard, 2019. "A DSGE model for Fiscal Policy Analysis in The Gambia," MPRA Paper 97874, University Library of Munich, Germany, revised 30 Dec 2019.
    5. Zeng, Yu-Chao & Zhan, Jie-Min & Wu, Neng-You & Luo, Ying-Ying & Cai, Wen-Hao, 2016. "Numerical investigation of electricity generation potential from fractured granite reservoir through a single vertical well at Yangbajing geothermal field," Energy, Elsevier, vol. 114(C), pages 24-39.
    6. Mastrucci, Alessio & Marvuglia, Antonino & Leopold, Ulrich & Benetto, Enrico, 2017. "Life Cycle Assessment of building stocks from urban to transnational scales: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 316-332.
    7. Wu, Qiong-Li & Cournède, Paul-Henry & Mathieu, Amélie, 2012. "An efficient computational method for global sensitivity analysis and its application to tree growth modelling," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 35-43.
    8. Liu, Qiang & Shang, Linlin & Duan, Yuanyuan, 2016. "Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources," Applied Energy, Elsevier, vol. 162(C), pages 149-162.
    9. Frédéric Branger & Louis-Gaëtan Giraudet & Céline Guivarch & Philippe Quirion, 2014. "Sensitivity analysis of an energy-economy model of the residential building sector," CIRED Working Papers hal-01016399, HAL.
    10. Adnan Haider & Asad Jan & Kalim Hyder, 2013. "On the (Ir)Relevance of Monetary Aggregate Targeting in Pakistan: An Eclectic View," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 18(2), pages 65-119, July-Dec.
    11. Paul Levine, 2012. "Monetary policy in an uncertain world: probability models and the design of robust monetary rules," Indian Growth and Development Review, Emerald Group Publishing Limited, vol. 5(1), pages 70-88, April.
    12. Moti Frank & Amir Harel & Uzi Orion, 2014. "Choosing the Appropriate Integration App roach in Systems Projects," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 213-224, June.
    13. Sankararaman, S. & Mahadevan, S., 2013. "Separating the contributions of variability and parameter uncertainty in probability distributions," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 187-199.
    14. Jonathan Benchimol, 2015. "Money in the production function: A new Keynesian DSGE perspective," Southern Economic Journal, John Wiley & Sons, vol. 82(1), pages 152-184, July.
    15. Adjemian, Stéphane & Bastani, Houtan & Juillard, Michel & Karamé, Fréderic & Mihoubi, Ferhat & Mutschler, Willi & Pfeifer, Johannes & Ratto, Marco & Rion, Normann & Villemot, Sébastien, 2022. "Dynare: Reference Manual Version 5," Dynare Working Papers 72, CEPREMAP, revised Mar 2023.
      • Stéphane Adjemian & Houtan Bastani & Michel Juillard & Frédéric Karamé & Ferhat Mihoubi & Willi Mutschler & Johannes Pfeifer & Marco Ratto & Sébastien Villemot & Normann Rion, 2023. "Dynare: Reference Manual Version 5," PSE Working Papers hal-04219920, HAL.
      • Stéphane Adjemian & Houtan Bastani & Michel Juillard & Frédéric Karamé & Ferhat Mihoubi & Willi Mutschler & Johannes Pfeifer & Marco Ratto & Sébastien Villemot & Normann Rion, 2023. "Dynare: Reference Manual Version 5," Working Papers hal-04219920, HAL.
    16. Ibrahim Unalmis, 2010. "Composition of the Government Spending and Behaviour of the Real Exchange Rate in a Small Open Economy," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 10(1), pages 1-27.
    17. Alessandro Franco & Maurizio Vaccaro, 2020. "Sustainable Sizing of Geothermal Power Plants: Appropriate Potential Assessment Methods," Sustainability, MDPI, vol. 12(9), pages 1-19, May.
    18. Fatma Canka Kilic, 2016. "Geothermal Energy in Turkey," Energy & Environment, , vol. 27(3-4), pages 360-376, May.
    19. Chen, Siyuan & Zhang, Qi & Li, Hailong & Mclellan, Benjamin & Zhang, Tiantian & Tan, Zhizhou, 2019. "Investment decision on shallow geothermal heating & cooling based on compound options model: A case study of China," Applied Energy, Elsevier, vol. 254(C).
    20. Shields, Michael D. & Zhang, Jiaxin, 2016. "The generalization of Latin hypercube sampling," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 96-108.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:256:y:2019:i:c:s0306261919316198. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.