Partial oxy-combustion technology for energy efficient CO2 capture process
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2019.113519
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Meihong & Joel, Atuman S. & Ramshaw, Colin & Eimer, Dag & Musa, Nuhu M., 2015. "Process intensification for post-combustion CO2 capture with chemical absorption: A critical review," Applied Energy, Elsevier, vol. 158(C), pages 275-291.
- Shen, Yao & Jiang, Chenkai & Zhang, Shihan & Chen, Jun & Wang, Lidong & Chen, Jianmeng, 2018. "Biphasic solvent for CO2 capture: Amine property-performance and heat duty relationship," Applied Energy, Elsevier, vol. 230(C), pages 726-733.
- Oh, Se-Young & Binns, Michael & Cho, Habin & Kim, Jin-Kuk, 2016. "Energy minimization of MEA-based CO2 capture process," Applied Energy, Elsevier, vol. 169(C), pages 353-362.
- Hanak, Dawid P. & Powell, Dante & Manovic, Vasilije, 2017. "Techno-economic analysis of oxy-combustion coal-fired power plant with cryogenic oxygen storage," Applied Energy, Elsevier, vol. 191(C), pages 193-203.
- Guo, Hui & Li, Chenxu & Shi, Xiaoqin & Li, Hui & Shen, Shufeng, 2019. "Nonaqueous amine-based absorbents for energy efficient CO2 capture," Applied Energy, Elsevier, vol. 239(C), pages 725-734.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dessì, Federica & Mureddu, Mauro & Ferrara, Francesca & Fermoso, Javier & Orsini, Alessandro & Sanna, Aimaro & Pettinau, Alberto, 2021. "Thermogravimetric characterisation and kinetic analysis of Nannochloropsis sp. and Tetraselmis sp. microalgae for pyrolysis, combustion and oxy-combustion," Energy, Elsevier, vol. 217(C).
- Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
- García-Luna, S. & Ortiz, C. & Chacartegui, R. & Pérez-Maqueda, L.A., 2023. "Large-scale oxygen-enriched air (OEA) production from polymeric membranes for partial oxycombustion processes," Energy, Elsevier, vol. 268(C).
- Kim, Donghee & Ahn, Hyungjun & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Experimental analysis of CO/H2 syngas with NOx and SOx reactions in pressurized oxy-fuel combustion," Energy, Elsevier, vol. 219(C).
- Kim, Donghee & Yang, Won & Huh, Kang Y. & Lee, Youngjae, 2021. "Demonstration of 0.1 MWth pilot-scale pressurized oxy-fuel combustion for unpurified natural gas without CO2 dilution," Energy, Elsevier, vol. 223(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hwang, Junhyeok & Kim, Jeongnam & Lee, Hee Won & Na, Jonggeol & Ahn, Byoung Sung & Lee, Sang Deuk & Kim, Hoon Sik & Lee, Hyunjoo & Lee, Ung, 2019. "An experimental based optimization of a novel water lean amine solvent for post combustion CO2 capture process," Applied Energy, Elsevier, vol. 248(C), pages 174-184.
- Wang, Rujie & Jiang, Lei & Li, Qiangwei & Gao, Ge & Zhang, Shihan & Wang, Lidong, 2020. "Energy-saving CO2 capture using sulfolane-regulated biphasic solvent," Energy, Elsevier, vol. 211(C).
- Yoro, Kelvin O. & Daramola, Michael O. & Sekoai, Patrick T. & Armah, Edward K. & Wilson, Uwemedimo N., 2021. "Advances and emerging techniques for energy recovery during absorptive CO2 capture: A review of process and non-process integration-based strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Alivand, Masood S. & Mazaheri, Omid & Wu, Yue & Stevens, Geoffrey W. & Scholes, Colin A. & Mumford, Kathryn A., 2019. "Development of aqueous-based phase change amino acid solvents for energy-efficient CO2 capture: The role of antisolvent," Applied Energy, Elsevier, vol. 256(C).
- Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
- Ortiz, C. & Valverde, J.M. & Chacartegui, R. & Benítez-Guerrero, M. & Perejón, A. & Romeo, L.M., 2017. "The Oxy-CaL process: A novel CO2 capture system by integrating partial oxy-combustion with the Calcium-Looping process," Applied Energy, Elsevier, vol. 196(C), pages 1-17.
- Guo, Juncheng & Tan, Chaohuan & Li, Zhexu & Chen, Bo & Yang, Hanxin & Luo, Rongxiang & Gonzalez-Ayala, Julian & Hernández, A. Calvo, 2024. "New insights into energy conversion mechanism, optimal absorbent selection criteria, and operation strategies of absorption carbon capture systems," Energy, Elsevier, vol. 304(C).
- Leimbrink, Mathias & Sandkämper, Stephanie & Wardhaugh, Leigh & Maher, Dan & Green, Phil & Puxty, Graeme & Conway, Will & Bennett, Robert & Botma, Henk & Feron, Paul & Górak, Andrzej & Skiborowski, Mi, 2017. "Energy-efficient solvent regeneration in enzymatic reactive absorption for carbon dioxide capture," Applied Energy, Elsevier, vol. 208(C), pages 263-276.
- Ding, Hongbing & Dong, Yuanyuan & Zhang, Yu & Wen, Chuang & Yang, Yan, 2024. "Mass, energy and economic analysis of supersonic CO2 separation for carbon capture, utilization and storage (CCUS)," Applied Energy, Elsevier, vol. 373(C).
- Gao, Hongxia & Huang, Yufei & Zhang, Xiaowen & Bairq, Zain Ali Saleh & Huang, Yangqiang & Tontiwachwuthikul, Paitoon & Liang, Zhiwu, 2020. "Catalytic performance and mechanism of SO42−/ZrO2/SBA-15 catalyst for CO2 desorption in CO2-loaded monoethanolamine solution," Applied Energy, Elsevier, vol. 259(C).
- Ali Saleh Bairq, Zain & Gao, Hongxia & Huang, Yufei & Zhang, Haiyan & Liang, Zhiwu, 2019. "Enhancing CO2 desorption performance in rich MEA solution by addition of SO42−/ZrO2/SiO2 bifunctional catalyst," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Wang, Rujie & Liu, Shanshan & Wang, Lidong & Li, Qiangwei & Zhang, Shihan & Chen, Bo & Jiang, Lei & Zhang, Yifeng, 2019. "Superior energy-saving splitter in monoethanolamine-based biphasic solvents for CO2 capture from coal-fired flue gas," Applied Energy, Elsevier, vol. 242(C), pages 302-310.
- Ji, Long & Yu, Hai & Li, Kangkang & Yu, Bing & Grigore, Mihaela & Yang, Qi & Wang, Xiaolong & Chen, Zuliang & Zeng, Ming & Zhao, Shuaifei, 2018. "Integrated absorption-mineralisation for low-energy CO2 capture and sequestration," Applied Energy, Elsevier, vol. 225(C), pages 356-366.
- Yi, Qun & Zhao, Yingjie & Huang, Yi & Wei, Guoqiang & Hao, Yanhong & Feng, Jie & Mohamed, Usama & Pourkashanian, Mohamed & Nimmo, William & Li, Wenying, 2018. "Life cycle energy-economic-CO2 emissions evaluation of biomass/coal, with and without CO2 capture and storage, in a pulverized fuel combustion power plant in the United Kingdom," Applied Energy, Elsevier, vol. 225(C), pages 258-272.
- Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
- Yaofeng Xu & Shuai Deng & Li Zhao & Xiangzhou Yuan & Jianxin Fu & Shuangjun Li & Yawen Liang & Junyao Wang & Jun Zhao, 2019. "Application of the Thermodynamic Cycle to Assess the Energy Efficiency of Amine-Based Absorption of Carbon Capture," Energies, MDPI, vol. 12(13), pages 1-20, June.
- Pereira, Luís M.C. & Llovell, Fèlix & Vega, Lourdes F., 2018. "Thermodynamic characterisation of aqueous alkanolamine and amine solutions for acid gas processing by transferable molecular models," Applied Energy, Elsevier, vol. 222(C), pages 687-703.
- Wu, Xiao M. & Qin, Zhen & Yu, Yun S. & Zhang, Zao X., 2018. "Experimental and numerical study on CO2 absorption mass transfer enhancement for a diameter-varying spray tower," Applied Energy, Elsevier, vol. 225(C), pages 367-379.
- Zhao, Bin & Liu, Fangzheng & Cui, Zheng & Liu, Changjun & Yue, Hairong & Tang, Siyang & Liu, Yingying & Lu, Houfang & Liang, Bin, 2017. "Enhancing the energetic efficiency of MDEA/PZ-based CO2 capture technology for a 650MW power plant: Process improvement," Applied Energy, Elsevier, vol. 185(P1), pages 362-375.
- Laura A. Pellegrini & Matteo Gilardi & Fabio Giudici & Elvira Spatolisano, 2021. "New Solvents for CO 2 and H 2 S Removal from Gaseous Streams," Energies, MDPI, vol. 14(20), pages 1-40, October.
More about this item
Keywords
Bench-scale; CCS; CO2 capture; Regeneration; Partial oxy-combustion;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:253:y:2019:i:c:116. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.