IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p923-d1035110.html
   My bibliography  Save this article

Part-I: State-of-the-Art Technologies of Solar Powered DC Microgrid with Hybrid Energy Storage Systems-Architecture Topologies

Author

Listed:
  • Dogga Raveendhra

    (EEE Department, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad 500090, India)

  • Rajana Poojitha

    (Zunik Energies Pvt. Ltd., I-2, TIDES Business Incubator, IIT Roorkee, Roorkee 247667, India)

  • Beeramangalla Lakshminarasaiah Narasimharaju

    (EEE Department, NIT Warangal, Warangal 506004, India)

  • Aliona Dreglea

    (Applied Maths Department, Energy Systems Institute of Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia)

  • Fang Liu

    (School of Automation, Central South University, Changsha 410083, China)

  • Daniil Panasetsky

    (Applied Maths Department, Energy Systems Institute of Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia)

  • Mukesh Pathak

    (EE Department, Indian Institute of Technology Roorkee, Uttarakhand 247667, India)

  • Denis Sidorov

    (Applied Maths Department, Energy Systems Institute of Siberian Branch of Russian Academy of Sciences, 664033 Irkutsk, Russia)

Abstract

In the case of microgrid (MG) systems, the choice of the right configuration plays a vital role to meet grid/load necessities when integrating low voltage, non-linear and highly sensitive (to environmental conditions) power sources such as solar PV modules, batteries and supercapacitors (SCs), etc. In the case of MG systems, the choice of the right configuration and the appropriate type of power converters in any application can have a significant impact on the optimum performance. Numerous architectures have been proposed for the integration of various energy sources to achieve optimum performance. A large number of research articles have been published in these areas. In this article, the detailed organization of various architectures based on the arrangement of various sources and detailed analyses is presented along with a discussion on those architectures. Moreover, the suitability of all the reviewed architectures based on driving factors such as (a) high conversion gain, (b) good power decoupling, (c) high efficiency, (d) isolation, (e) power-handling capabilities and (f) compact design is presented in the discussions section. The critical examination and comparative study presented in this work can assist both industry personnel and academicians in selecting the best architectural and power converter topologies required for optimum performance.

Suggested Citation

  • Dogga Raveendhra & Rajana Poojitha & Beeramangalla Lakshminarasaiah Narasimharaju & Aliona Dreglea & Fang Liu & Daniil Panasetsky & Mukesh Pathak & Denis Sidorov, 2023. "Part-I: State-of-the-Art Technologies of Solar Powered DC Microgrid with Hybrid Energy Storage Systems-Architecture Topologies," Energies, MDPI, vol. 16(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:923-:d:1035110
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/923/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/923/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Song, Ziyou & Hou, Jun & Hofmann, Heath & Li, Jianqiu & Ouyang, Minggao, 2017. "Sliding-mode and Lyapunov function-based control for battery/supercapacitor hybrid energy storage system used in electric vehicles," Energy, Elsevier, vol. 122(C), pages 601-612.
    2. Akram, Umer & Nadarajah, Mithulananthan & Shah, Rakibuzzaman & Milano, Federico, 2020. "A review on rapid responsive energy storage technologies for frequency regulation in modern power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    3. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    4. Chang Ye & Shihong Miao & Qi Lei & Yaowang Li, 2016. "Dynamic Energy Management of Hybrid Energy Storage Systems with a Hierarchical Structure," Energies, MDPI, vol. 9(6), pages 1-15, May.
    5. Ma, Tao & Yang, Hongxing & Lu, Lin, 2015. "Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems," Applied Energy, Elsevier, vol. 153(C), pages 56-62.
    6. Denis Sidorov & Daniil Panasetsky & Nikita Tomin & Dmitriy Karamov & Aleksei Zhukov & Ildar Muftahov & Aliona Dreglea & Fang Liu & Yong Li, 2020. "Toward Zero-Emission Hybrid AC/DC Power Systems with Renewable Energy Sources and Storages: A Case Study from Lake Baikal Region," Energies, MDPI, vol. 13(5), pages 1-18, March.
    7. Linssen, Jochen & Stenzel, Peter & Fleer, Johannes, 2017. "Techno-economic analysis of photovoltaic battery systems and the influence of different consumer load profiles," Applied Energy, Elsevier, vol. 185(P2), pages 2019-2025.
    8. Dufo-López, Rodolfo & Lujano-Rojas, Juan M. & Bernal-Agustín, José L., 2014. "Comparison of different lead–acid battery lifetime prediction models for use in simulation of stand-alone photovoltaic systems," Applied Energy, Elsevier, vol. 115(C), pages 242-253.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Warsama, Aziza Idriss & Selimli, Selcuk, 2024. "Effect of dust deposition density and particle size on the energetic and exergetic performance of photovoltaic modules: An experimental study," Renewable Energy, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing, Wenlong & Lai, Chean Hung & Wong, Wallace S.H. & Wong, M.L. Dennis, 2018. "A comprehensive study of battery-supercapacitor hybrid energy storage system for standalone PV power system in rural electrification," Applied Energy, Elsevier, vol. 224(C), pages 340-356.
    2. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    3. Alejandro Sallyth Guerrero Hernandez & Lúcia Valéria Ramos Arruda, 2021. "Economic viability and optimization of solar microgrids with hybrid storage in a non-interconnected zone in Colombia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12842-12866, September.
    4. Chen, Hui & Zhang, Zehui & Guan, Cong & Gao, Haibo, 2020. "Optimization of sizing and frequency control in battery/supercapacitor hybrid energy storage system for fuel cell ship," Energy, Elsevier, vol. 197(C).
    5. Muhammad Khalid, 2019. "A Review on the Selected Applications of Battery-Supercapacitor Hybrid Energy Storage Systems for Microgrids," Energies, MDPI, vol. 12(23), pages 1-34, November.
    6. Fan, Feilong & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Hu, Yan & Ma, Zhoujun, 2018. "A conditional depreciation balancing strategy for the equitable operation of extended hybrid energy storage systems," Applied Energy, Elsevier, vol. 228(C), pages 1937-1952.
    7. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    8. Yang, Bo & Wang, Jingbo & Sang, Yiyan & Yu, Lei & Shu, Hongchun & Li, Shengnan & He, Tingyi & Yang, Lei & Zhang, Xiaoshun & Yu, Tao, 2019. "Applications of supercapacitor energy storage systems in microgrid with distributed generators via passive fractional-order sliding-mode control," Energy, Elsevier, vol. 187(C).
    9. Masaki, Mukalu Sandro & Zhang, Lijun & Xia, Xiaohua, 2019. "A hierarchical predictive control for supercapacitor-retrofitted grid-connected hybrid renewable systems," Applied Energy, Elsevier, vol. 242(C), pages 393-402.
    10. Qi, Nanjian & Yin, Yajiang & Dai, Keren & Wu, Chengjun & Wang, Xiaofeng & You, Zheng, 2021. "Comprehensive optimized hybrid energy storage system for long-life solar-powered wireless sensor network nodes," Applied Energy, Elsevier, vol. 290(C).
    11. Liu, Chang & Wang, Yujie & Chen, Zonghai, 2019. "Degradation model and cycle life prediction for lithium-ion battery used in hybrid energy storage system," Energy, Elsevier, vol. 166(C), pages 796-806.
    12. Pan, Chenyun & Fan, Hongtao & Zhang, Ruixiang & Sun, Jie & Wang, Yu & Sun, Yaojie, 2023. "An improved multi-timescale coordinated control strategy for an integrated energy system with a hybrid energy storage system," Applied Energy, Elsevier, vol. 343(C).
    13. Zhou, Yanting & Wang, Yanan & Wang, Kai & Kang, Le & Peng, Fei & Wang, Licheng & Pang, Jinbo, 2020. "Hybrid genetic algorithm method for efficient and robust evaluation of remaining useful life of supercapacitors," Applied Energy, Elsevier, vol. 260(C).
    14. Hong, Jichao & Wang, Zhenpo & Zhang, Tiezhu & Yin, Huaixian & Zhang, Hongxin & Huo, Wei & Zhang, Yi & Li, Yuanyuan, 2019. "Research on integration simulation and balance control of a novel load isolated pure electric driving system," Energy, Elsevier, vol. 189(C).
    15. Ahmed Samawi Alkhafaji & Hafedh Trabelsi, 2022. "Uses of Superconducting Magnetic Energy Storage Systems in Microgrids under Unbalanced Inductive Loads and Partial Shading Conditions," Energies, MDPI, vol. 15(22), pages 1-28, November.
    16. Djamila Rekioua, 2023. "Energy Storage Systems for Photovoltaic and Wind Systems: A Review," Energies, MDPI, vol. 16(9), pages 1-26, May.
    17. Gomez-Gonzalez, M. & Hernandez, J.C. & Vera, D. & Jurado, F., 2020. "Optimal sizing and power schedule in PV household-prosumers for improving PV self-consumption and providing frequency containment reserve," Energy, Elsevier, vol. 191(C).
    18. Sun, Qixing & Xing, Dong & Alafnan, Hamoud & Pei, Xiaoze & Zhang, Min & Yuan, Weijia, 2019. "Design and test of a new two-stage control scheme for SMES-battery hybrid energy storage systems for microgrid applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Kang, Hyuna & Jung, Seunghoon & Lee, Minhyun & Hong, Taehoon, 2022. "How to better share energy towards a carbon-neutral city? A review on application strategies of battery energy storage system in city," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    20. Solano, J.C. & Olivieri, L. & Caamaño-Martín, E., 2017. "Assessing the potential of PV hybrid systems to cover HVAC loads in a grid-connected residential building through intelligent control," Applied Energy, Elsevier, vol. 206(C), pages 249-266.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:923-:d:1035110. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.