IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v240y2019icp446-452.html
   My bibliography  Save this article

Effects of building size growth on residential energy efficiency and conservation in California

Author

Listed:
  • Fournier, Eric D.
  • Federico, Felicia
  • Porse, Erik
  • Pincetl, Stephanie

Abstract

Many utility and government programs exist to promote energy efficiency (EE) in residential buildings. While programs have succeeded in reducing per square foot energy usage intensity (EUI), they do not necessarily promote conservation, in terms of reduced total energy consumption. Using statistical analysis and data mining techniques, we examined relationships between home size, electricity and natural gas EUIs, and neighborhood level socio-economic attributes among ∼1.3 million single-family homes in Los Angeles County (LAC). We observed that among homes constructed between 1900 and 2010, the growth in median home size by construction vintage year has outpaced combined EUI reductions by 60%. Results of a Monte-Carlo sampling procedure derived from these observed trends indicate that past historical energy savings within LAC, attributable to state mandated EE policies, could have been equivalently achieved by constraining growth in the size of newly constructed homes. These findings have significant implications for the design of future energy conservation policies within growing urban areas.

Suggested Citation

  • Fournier, Eric D. & Federico, Felicia & Porse, Erik & Pincetl, Stephanie, 2019. "Effects of building size growth on residential energy efficiency and conservation in California," Applied Energy, Elsevier, vol. 240(C), pages 446-452.
  • Handle: RePEc:eee:appene:v:240:y:2019:i:c:p:446-452
    DOI: 10.1016/j.apenergy.2019.02.072
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919303691
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.02.072?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Zhaohua & Lu, Milin & Wang, Jian-Cai, 2014. "Direct rebound effect on urban residential electricity use: An empirical study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 124-132.
    2. Barbose, Galen & Goldman, Charles & Schlegel, Jeff, 2009. "The Shifting Landscape of Ratepayer-Funded Energy Efficiency in the U.S," The Electricity Journal, Elsevier, vol. 22(8), pages 29-44, October.
    3. Porse, Erik & Derenski, Joshua & Gustafson, Hannah & Elizabeth, Zoe & Pincetl, Stephanie, 2016. "Structural, geographic, and social factors in urban building energy use: Analysis of aggregated account-level consumption data in a megacity," Energy Policy, Elsevier, vol. 96(C), pages 179-192.
    4. Levinson, Arik, 2014. "California energy efficiency: Lessons for the rest of the world, or not?," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 269-289.
    5. Gregory A. Keoleian & Steven Blanchard & Peter Reppe, 2000. "Life‐Cycle Energy, Costs, and Strategies for Improving a Single‐Family House," Journal of Industrial Ecology, Yale University, vol. 4(2), pages 135-156, April.
    6. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    7. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    8. Brounen, Dirk & Kok, Nils & Quigley, John M., 2012. "Residential energy use and conservation: Economics and demographics," European Economic Review, Elsevier, vol. 56(5), pages 931-945.
    9. Reid Ewing & Fang Rong, 2008. "The impact of urban form on U.S. residential energy use," Housing Policy Debate, Taylor & Francis Journals, vol. 19(1), pages 1-30, January.
    10. Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard Barry & Tong, Zheming, 2016. "Energy Saving Potential of Natural Ventilation in China: The Impact of Ambient Air Pollution," Scholarly Articles 27733689, Harvard University Department of Economics.
    11. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    12. Xiaolu Gao & Yasushi Asami & Wataru Katsumata, 2006. "Evaluating Land-Use Restrictions concerning the Floor Area Ratio of Lots," Environment and Planning C, , vol. 24(4), pages 515-532, August.
    13. Grant D. Jacobsen & Matthew J. Kotchen, 2013. "Are Building Codes Effective at Saving Energy? Evidence from Residential Billing Data in Florida," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 34-49, March.
    14. Wada, Kenichi & Akimoto, Keigo & Sano, Fuminori & Oda, Junichiro & Homma, Takashi, 2012. "Energy efficiency opportunities in the residential sector and their feasibility," Energy, Elsevier, vol. 48(1), pages 5-10.
    15. Huebner, Gesche & Shipworth, David & Hamilton, Ian & Chalabi, Zaid & Oreszczyn, Tadj, 2016. "Understanding electricity consumption: A comparative contribution of building factors, socio-demographics, appliances, behaviours and attitudes," Applied Energy, Elsevier, vol. 177(C), pages 692-702.
    16. Dimitropoulos, John, 2007. "Energy productivity improvements and the rebound effect: An overview of the state of knowledge," Energy Policy, Elsevier, vol. 35(12), pages 6354-6363, December.
    17. Bartusch, Cajsa & Odlare, Monica & Wallin, Fredrik & Wester, Lars, 2012. "Exploring variance in residential electricity consumption: Household features and building properties," Applied Energy, Elsevier, vol. 92(C), pages 637-643.
    18. Sorrell, Steve & Dimitropoulos, John & Sommerville, Matt, 2009. "Empirical estimates of the direct rebound effect: A review," Energy Policy, Elsevier, vol. 37(4), pages 1356-1371, April.
    19. Sanquist, Thomas F. & Orr, Heather & Shui, Bin & Bittner, Alvah C., 2012. "Lifestyle factors in U.S. residential electricity consumption," Energy Policy, Elsevier, vol. 42(C), pages 354-364.
    20. McKenna, Eoghan & Richardson, Ian & Thomson, Murray, 2012. "Smart meter data: Balancing consumer privacy concerns with legitimate applications," Energy Policy, Elsevier, vol. 41(C), pages 807-814.
    21. Janet L. Reyna & Mikhail V. Chester, 2015. "The Growth of Urban Building Stock: Unintended Lock-in and Embedded Environmental Effects," Journal of Industrial Ecology, Yale University, vol. 19(4), pages 524-537, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Shuyu & Tong, Kangkang, 2024. "Rural-urban inequality in energy use sufficiency and efficiency during a rapid urbanization period," Applied Energy, Elsevier, vol. 364(C).
    2. Ruddell, Benjamin L. & Cheng, Dan & Fournier, Eric Daniel & Pincetl, Stephanie & Potter, Caryn & Rushforth, Richard, 2020. "Guidance on the usability-privacy tradeoff for utility customer data aggregation," Utilities Policy, Elsevier, vol. 67(C).
    3. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    4. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    5. Yu, Dejian & He, Xiaorong, 2020. "A bibliometric study for DEA applied to energy efficiency: Trends and future challenges," Applied Energy, Elsevier, vol. 268(C).
    6. Porse, Erik & Fournier, Eric & Cheng, Dan & Hirashiki, Claire & Gustafson, Hannah & Federico, Felicia & Pincetl, Stephanie, 2020. "Net solar generation potential from urban rooftops in Los Angeles," Energy Policy, Elsevier, vol. 142(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Satre-Meloy, Aven, 2019. "Investigating structural and occupant drivers of annual residential electricity consumption using regularization in regression models," Energy, Elsevier, vol. 174(C), pages 148-168.
    2. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    3. Ohler, Adrienne M. & Loomis, David G. & Ilves, Kadi, 2020. "A study of electricity savings from energy star appliances using household survey data," Energy Policy, Elsevier, vol. 144(C).
    4. Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2020. "From frugal Jane to wasteful John: A quantile regression analysis of Swiss households’ electricity demand," Energy Policy, Elsevier, vol. 138(C).
    5. Cansino, José M. & Dugo, Víctor & Gálvez-Ruiz, David & Román-Collado, Rocío, 2023. "What drove electricity consumption in the residential sector during the SARS-CoV-2 confinement? A special focus on university students in southern Spain," Energy, Elsevier, vol. 262(PB).
    6. Lee, Soo-Jin & Song, Seung-Yeong, 2022. "Time-series analysis of the effects of building and household features on residential end-use energy," Applied Energy, Elsevier, vol. 312(C).
    7. Kettani, Maryème & Sanin, Maria Eugenia, 2024. "Energy consumption and energy poverty in Morocco," Energy Policy, Elsevier, vol. 185(C).
    8. Fei Wang & Yili Yu & Xinkang Wang & Hui Ren & Miadreza Shafie-Khah & João P. S. Catalão, 2018. "Residential Electricity Consumption Level Impact Factor Analysis Based on Wrapper Feature Selection and Multinomial Logistic Regression," Energies, MDPI, vol. 11(5), pages 1-26, May.
    9. Wen, Fenghua & Ye, Zhengke & Yang, Huaidong & Li, Ke, 2018. "Exploring the rebound effect from the perspective of household: An analysis of China's provincial level," Energy Economics, Elsevier, vol. 75(C), pages 345-356.
    10. Copiello, Sergio & Grillenzoni, Carlo, 2017. "Is the cold the only reason why we heat our homes? Empirical evidence from spatial series data," Applied Energy, Elsevier, vol. 193(C), pages 491-506.
    11. Bayram, Islam Safak & Ustun, Taha Selim, 2017. "A survey on behind the meter energy management systems in smart grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1208-1232.
    12. Besagni, Giorgio & Borgarello, Marco, 2018. "The determinants of residential energy expenditure in Italy," Energy, Elsevier, vol. 165(PA), pages 369-386.
    13. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    14. Lecca, Patrizio & McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2014. "The added value from a general equilibrium analysis of increased efficiency in household energy use," Ecological Economics, Elsevier, vol. 100(C), pages 51-62.
    15. Huang, Wen-Hsiu, 2015. "The determinants of household electricity consumption in Taiwan: Evidence from quantile regression," Energy, Elsevier, vol. 87(C), pages 120-133.
    16. Jacqueline Nicole Adams & Zsófia Deme Bélafi & Miklós Horváth & János Balázs Kocsis & Tamás Csoknyai, 2021. "How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review," Energies, MDPI, vol. 14(9), pages 1-23, April.
    17. Zhen Hu & Mei Wang & Zhe Cheng, 2022. "Mapping the knowledge development and trend of household energy consumption," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6053-6071, May.
    18. Andersen, Kristoffer Steen & Wiese, Catharina & Petrovic, Stefan & McKenna, Russell, 2020. "Exploring the role of households’ hurdle rates and demand elasticities in meeting Danish energy-savings target," Energy Policy, Elsevier, vol. 146(C).
    19. Yarbaşı, İkram Yusuf & Çelik, Ali Kemal, 2023. "The determinants of household electricity demand in Turkey: An implementation of the Heckman Sample Selection model," Energy, Elsevier, vol. 283(C).
    20. Hoai-Son Nguyen & Minh Ha-Duong, 2018. "Family size, Increasing block tariff and Economies of scale of household electricity consumption in Vietnam from 2010 to 2014," CIRED Working Papers hal-01714899, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:240:y:2019:i:c:p:446-452. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.