IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p2967-d1106294.html
   My bibliography  Save this article

Fuzzy Controllers Instead of Classical PIDs in HVAC Equipment: Dusting Off a Well-Known Technology and Today’s Implementation for Better Energy Efficiency and User Comfort

Author

Listed:
  • Adrian Chojecki

    (Department of Electrical Apparatus, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, 90-537 Lodz, Poland)

  • Arkadiusz Ambroziak

    (Department of Electrical Apparatus, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, 90-537 Lodz, Poland)

  • Piotr Borkowski

    (Department of Electrical Apparatus, Faculty of Electrical, Electronic, Computer and Control Engineering, Lodz University of Technology, 90-537 Lodz, Poland)

Abstract

Cutting-edge building energy management systems (BEMS) interact with heating, ventilation, air conditioning (HVAC) systems, which generally account for much of the energy consumption. Major attention is focused on the BEMS themselves, barring on-field equipment. In HVAC equipment, sub-optimal controller settings may lead to energy losses and user discomfort, for instance, due to oscillations of air temperature and fan speeds. The way to solve this problem could be to replace classical PID controllers with an alternative concept that does not require tuning and works optimally for a wide range of parameters. This paper compares a fuzzy logic controller (FLC) with a standard PID for a model-based simulation of an HVAC system in Simulink for different conditions using real building measurement data. The end result is the implementation of the developed methods in a newly designed universal control board for air handling units (AHU). The proposed FLC achieves better integral control quality indicators (IAE, ISE, ITAE, ITSE) by at least 27.4%, and smaller supply air temperature variation; the daily mean square error (MSE) was reduced by an average of 36%, which leads immediately to better occupant comfort and a presumed reduction in energy consumption. Compared to the untuned PID, energy consumption was 12.7% lower; this will ensure improved economy from the lowest level, and paves the way for interoperability with high-level energy management schemes.

Suggested Citation

  • Adrian Chojecki & Arkadiusz Ambroziak & Piotr Borkowski, 2023. "Fuzzy Controllers Instead of Classical PIDs in HVAC Equipment: Dusting Off a Well-Known Technology and Today’s Implementation for Better Energy Efficiency and User Comfort," Energies, MDPI, vol. 16(7), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2967-:d:1106294
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/2967/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/2967/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Png, Ethan & Srinivasan, Seshadhri & Bekiroglu, Korkut & Chaoyang, Jiang & Su, Rong & Poolla, Kameshwar, 2019. "An internet of things upgrade for smart and scalable heating, ventilation and air-conditioning control in commercial buildings," Applied Energy, Elsevier, vol. 239(C), pages 408-424.
    2. Wang, Junke & Yik Tang, Choon & Song, Li, 2022. "Analysis of precooling optimization for residential buildings," Applied Energy, Elsevier, vol. 323(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. García Vázquez, C.A. & Cotfas, D.T. & González Santos, A.I. & Cotfas, P.A. & León Ávila, B.Y., 2024. "Reduction of electricity consumption in an AHU using mathematical modelling for controller tuning," Energy, Elsevier, vol. 293(C).
    2. Amal Azzi & Mohamed Tabaa & Badr Chegari & Hanaa Hachimi, 2024. "Balancing Sustainability and Comfort: A Holistic Study of Building Control Strategies That Meet the Global Standards for Efficiency and Thermal Comfort," Sustainability, MDPI, vol. 16(5), pages 1-36, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    2. Dongsu Kim & Jongman Lee & Sunglok Do & Pedro J. Mago & Kwang Ho Lee & Heejin Cho, 2022. "Energy Modeling and Model Predictive Control for HVAC in Buildings: A Review of Current Research Trends," Energies, MDPI, vol. 15(19), pages 1-30, October.
    3. Kinga Stecuła & Radosław Wolniak & Wieslaw Wes Grebski, 2023. "AI-Driven Urban Energy Solutions—From Individuals to Society: A Review," Energies, MDPI, vol. 16(24), pages 1-34, December.
    4. Hua, Pengmin & Wang, Haichao & Xie, Zichan & Lahdelma, Risto, 2024. "Multi-criteria evaluation of novel multi-objective model predictive control method for indoor thermal comfort," Energy, Elsevier, vol. 289(C).
    5. Alessandro Franco & Lorenzo Miserocchi & Daniele Testi, 2021. "HVAC Energy Saving Strategies for Public Buildings Based on Heat Pumps and Demand Controlled Ventilation," Energies, MDPI, vol. 14(17), pages 1-20, September.
    6. Raman, Naren Srivaths & Devaprasad, Karthikeya & Chen, Bo & Ingley, Herbert A. & Barooah, Prabir, 2020. "Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations," Applied Energy, Elsevier, vol. 279(C).
    7. Su, Bing & Wang, Shengwei, 2020. "An agent-based distributed real-time optimal control strategy for building HVAC systems for applications in the context of future IoT-based smart sensor networks," Applied Energy, Elsevier, vol. 274(C).
    8. Joowook Kim & Doosam Song & Suyeon Kim & Sohyun Park & Youngjin Choi & Hyunwoo Lim, 2020. "Energy-Saving Potential of Extending Temperature Set-Points in a VRF Air-Conditioned Building," Energies, MDPI, vol. 13(9), pages 1-17, May.
    9. Tushar, Wayes & Yuen, Chau & Saha, Tapan K. & Morstyn, Thomas & Chapman, Archie C. & Alam, M. Jan E. & Hanif, Sarmad & Poor, H. Vincent, 2021. "Peer-to-peer energy systems for connected communities: A review of recent advances and emerging challenges," Applied Energy, Elsevier, vol. 282(PA).
    10. Karam M. Al-Obaidi & Mohataz Hossain & Nayef A. M. Alduais & Husam S. Al-Duais & Hossein Omrany & Amirhosein Ghaffarianhoseini, 2022. "A Review of Using IoT for Energy Efficient Buildings and Cities: A Built Environment Perspective," Energies, MDPI, vol. 15(16), pages 1-32, August.
    11. Rafsanjani, Hamed Nabizadeh & Ghahramani, Ali & Nabizadeh, Amir Hossein, 2020. "iSEA: IoT-based smartphone energy assistant for prompting energy-aware behaviors in commercial buildings," Applied Energy, Elsevier, vol. 266(C).
    12. Kim, Jeong Hun & Cho, Jae Yong & Jhun, Jeong Pil & Song, Gyeong Ju & Eom, Jong Hyuk & Jeong, Sinwoo & Hwang, Wonseop & Woo, Min Sik & Sung, Tae Hyun, 2021. "Development of a hybrid type smart pen piezoelectric energy harvester for an IoT platform," Energy, Elsevier, vol. 222(C).
    13. Raman, Naren Srivaths & Chen, Bo & Barooah, Prabir, 2022. "On energy-efficient HVAC operation with Model Predictive Control: A multiple climate zone study," Applied Energy, Elsevier, vol. 324(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:2967-:d:1106294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.