IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v188y2022icp450-464.html
   My bibliography  Save this article

Combining horizontal evacuated tubes with booster mirror reflector to achieve seasonal reverse output: Technical and experimental investigation

Author

Listed:
  • Chen, Xiaomeng
  • Yang, Xudong
  • Li, Muran

Abstract

Owing to seasonal fluctuations in solar radiation resources and ambient air temperature, stationary solar collectors have higher output in summer and lower output in winter. However, seasonal heating demand and hot water usage follows an opposite pattern, resulting in insufficient heating in winter and the risk of overheating in summer, reducing the feasibility of solar thermal technology. In this study, a new configuration that combines horizontal evacuated tubes with a mirror reflector was developed to achieve seasonal reverse performance: high performance in winter and low performance in summer. In contrast to conventional collectors, the collector plane of this new module was inversely inclined, pointing to the solar altitude angle on the summer solstice. Together with the bottom mirror reflector, the normal vector of the composed aperture plane was designed to point to the solar altitude angle on the winter solstice. Through experimental and numerical studies, we found that the standardized thermal efficiency of the new module on the winter solstice was comparatively high because it can be regarded as a concentrating collector with a concentration ratio of 0.77. On the summer solstice, the thermal efficiency was extremely reduced due to 100% self-shading of the collector plane. Based on the idea of overcoming the seasonal instability of renewable resources, this designed solar module is expected to enhance the competitiveness of solar heating technology, especially in the decentralized clean heating market.

Suggested Citation

  • Chen, Xiaomeng & Yang, Xudong & Li, Muran, 2022. "Combining horizontal evacuated tubes with booster mirror reflector to achieve seasonal reverse output: Technical and experimental investigation," Renewable Energy, Elsevier, vol. 188(C), pages 450-464.
  • Handle: RePEc:eee:renene:v:188:y:2022:i:c:p:450-464
    DOI: 10.1016/j.renene.2022.02.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122001835
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.02.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhijian Liu & Kejun Liu & Hao Li & Xinyu Zhang & Guangya Jin & Kewei Cheng, 2015. "Artificial Neural Networks-Based Software for Measuring Heat Collection Rate and Heat Loss Coefficient of Water-in-Glass Evacuated Tube Solar Water Heaters," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-16, December.
    2. Kabeel, A.E. & Khalil, A. & Elsayed, S.S. & Alatyar, A.M., 2015. "Modified mathematical model for evaluating the performance of water-in-glass evacuated tube solar collector considering tube shading effect," Energy, Elsevier, vol. 89(C), pages 24-34.
    3. Mao, Chunliu & Li, Muran & Li, Na & Shan, Ming & Yang, Xudong, 2019. "Mathematical model development and optimal design of the horizontal all-glass evacuated tube solar collectors integrated with bottom mirror reflectors for solar energy harvesting," Applied Energy, Elsevier, vol. 238(C), pages 54-68.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qiong & Gao, Wenfeng & Lin, Wenxian & Liu, Tao & Zhang, Yougang & Ding, Xiang & Huang, Xiaoqiao & Liu, Wuming, 2020. "Experiment and simulation study on convective heat transfer of all-glass evacuated tube solar collector," Renewable Energy, Elsevier, vol. 152(C), pages 1129-1139.
    2. Xia, En-Tong & Chen, Fei, 2020. "Analyzing thermal properties of solar evacuated tube arrays coupled with mini-compound parabolic concentrator," Renewable Energy, Elsevier, vol. 153(C), pages 155-167.
    3. Fathabadi, Hassan, 2020. "Novel solar collector: Evaluating the impact of nanoparticles added to the collector’s working fluid, heat transfer fluid temperature and flow rate," Renewable Energy, Elsevier, vol. 148(C), pages 1165-1173.
    4. Kabeel, A.E. & Khalil, A. & Elsayed, S.S. & Alatyar, A.M., 2018. "Theoretical investigation on energy storage characteristics of a solar liquid desiccant air conditioning system in Egypt," Energy, Elsevier, vol. 158(C), pages 164-180.
    5. Chen, Xiaomeng & Wang, Yang & Yang, Xudong, 2023. "New biaxial approach to evaluate the optical performance of evacuated tube solar thermal collector," Energy, Elsevier, vol. 271(C).
    6. Sadeghi, Gholamabbas & Pisello, Anna Laura & Safarzadeh, Habibollah & Poorhossein, Miad & Jowzi, Mohammad, 2020. "On the effect of storage tank type on the performance of evacuated tube solar collectors: Solar radiation prediction analysis and case study," Energy, Elsevier, vol. 198(C).
    7. Mao, Chunliu & Li, Muran & Li, Na & Shan, Ming & Yang, Xudong, 2019. "Mathematical model development and optimal design of the horizontal all-glass evacuated tube solar collectors integrated with bottom mirror reflectors for solar energy harvesting," Applied Energy, Elsevier, vol. 238(C), pages 54-68.
    8. Bhusal, Yogesh & Hassanzadeh, Ali & Jiang, Lun & Winston, Roland, 2020. "Technical and economic analysis of a novel low-cost concentrated medium-temperature solar collector," Renewable Energy, Elsevier, vol. 146(C), pages 968-985.
    9. Chan, A.L.S., 2019. "Effect of adjacent shading on the energy and environmental performance of photovoltaic glazing system in building application," Energy, Elsevier, vol. 187(C).
    10. Qiu, Guodong & Ma, Yuanyang & Song, Weiming & Cai, Weihua, 2021. "Comparative study on solar flat-plate collectors coupled with three types of reflectors not requiring solar tracking for space heating," Renewable Energy, Elsevier, vol. 169(C), pages 104-116.
    11. Athanasios Anagnostis & Serafeim Moustakidis & Elpiniki Papageorgiou & Dionysis Bochtis, 2022. "A Hybrid Bimodal LSTM Architecture for Cascading Thermal Energy Storage Modelling," Energies, MDPI, vol. 15(6), pages 1-24, March.
    12. Kumar, P. Manoj & Mylsamy, K., 2020. "A comprehensive study on thermal storage characteristics of nano-CeO2 embedded phase change material and its influence on the performance of evacuated tube solar water heater," Renewable Energy, Elsevier, vol. 162(C), pages 662-676.
    13. He, Zhaoyu & Guo, Weimin & Zhang, Peng, 2022. "Performance prediction, optimal design and operational control of thermal energy storage using artificial intelligence methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    14. Yang, Huayu & Zhang, Yuhao & Gao, Wenhua & Yan, Bowen & Zhao, Jianxin & Zhang, Hao & Chen, Wei & Fan, Daming, 2021. "Steam replacement strategy using microwave resonance: A future system for continuous-flow heating applications," Applied Energy, Elsevier, vol. 283(C).
    15. Zhijian Liu & Hao Li & Guoqing Cao, 2017. "Quick Estimation Model for the Concentration of Indoor Airborne Culturable Bacteria: An Application of Machine Learning," IJERPH, MDPI, vol. 14(8), pages 1-9, July.
    16. Nie, Yazhou & Deng, Mengsi & Shan, Ming & Yang, Xudong, 2023. "Clean and low-carbon heating in the building sector of China: 10-Year development review and policy implications," Energy Policy, Elsevier, vol. 179(C).
    17. Vishal Dabra & Avadhesh Yadav, 2022. "To optimize the flow distribution in concentric glass tube solar air collector with various configuration of manifolds," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 10902-10923, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:188:y:2022:i:c:p:450-464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.