IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v237y2019icp671-681.html
   My bibliography  Save this article

Thermal cycling of thermoelectric generators: The effect of heating rate

Author

Listed:
  • Merienne, R.
  • Lynn, J.
  • McSweeney, E.
  • O'Shaughnessy, S.M.

Abstract

Thermoelectric generators, or TEGs, are solid state devices which can convert heat directly into electricity according to the Seebeck effect. When thermoelectric generators are subjected to thermal cycling they can undergo severe performance degradation. In this study, an experimental rig is constructed which is capable of thermally cycling the heat delivered to commercially available thermoelectric generators. An experimental investigation is undertaken to elucidate the effects of the cycling and heating rate on the power generation performance of the generators over time. Three generator modules of the same specifications were subjected to different heating rates. The figure of merit, the electrical power output, the effective Seebeck coefficient and the internal resistance of the generators are measured to assess the evolution of the modules’ performance over 600 heating and cooling cycles. It is determined that all thermoelectric generators display power generation performance reductions, and that faster thermal cycling rates lead to both faster performance degradation and an overall greater performance drop. It is observed that the reduction of the figure of merit and power generation performance is primarily due to the increase of the internal resistance of the thermoelectric generators.

Suggested Citation

  • Merienne, R. & Lynn, J. & McSweeney, E. & O'Shaughnessy, S.M., 2019. "Thermal cycling of thermoelectric generators: The effect of heating rate," Applied Energy, Elsevier, vol. 237(C), pages 671-681.
  • Handle: RePEc:eee:appene:v:237:y:2019:i:c:p:671-681
    DOI: 10.1016/j.apenergy.2019.01.041
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919300418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.01.041?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module," Applied Energy, Elsevier, vol. 88(12), pages 5173-5179.
    2. Chen, Leisheng & Lee, Jaeyoung, 2015. "Effect of pulsed heat power on the thermal and electrical performances of a thermoelectric generator," Applied Energy, Elsevier, vol. 150(C), pages 138-149.
    3. Tingzhen Ming & Qiankun Wang & Keyuan Peng & Zhe Cai & Wei Yang & Yongjia Wu & Tingrui Gong, 2015. "The Influence of Non-Uniform High Heat Flux on Thermal Stress of Thermoelectric Power Generator," Energies, MDPI, vol. 8(11), pages 1-19, November.
    4. Børset, Marit Takla & Wilhelmsen, Øivind & Kjelstrup, Signe & Burheim, Odne Stokke, 2017. "Exploring the potential for waste heat recovery during metal casting with thermoelectric generators: On-site experiments and mathematical modeling," Energy, Elsevier, vol. 118(C), pages 865-875.
    5. Deasy, M.J. & Baudin, N. & O'Shaughnessy, S.M. & Robinson, A.J., 2017. "Simulation-driven design of a passive liquid cooling system for a thermoelectric generator," Applied Energy, Elsevier, vol. 205(C), pages 499-510.
    6. Aranguren, Patricia & Astrain, David & Pérez, Miren Gurutze, 2014. "Computational and experimental study of a complete heat dissipation system using water as heat carrier placed on a thermoelectric generator," Energy, Elsevier, vol. 74(C), pages 346-358.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julian Schwab & Christopher Fritscher & Michael Filatov & Martin Kober & Frank Rinderknecht & Tjark Siefkes, 2023. "Experimental Analysis of the Long-Term Stability of Thermoelectric Generators under Thermal Cycling in Air and Argon Atmosphere," Energies, MDPI, vol. 16(10), pages 1-10, May.
    2. Wang, Jun & Song, Xiangxiang & Ni, Qiqiang & Li, Xingjun & Meng, Qingtian, 2021. "Experimental investigation on the influence of phase change material on the output performance of thermoelectric generator," Renewable Energy, Elsevier, vol. 177(C), pages 884-894.
    3. Fathy, Ahmed, 2023. "Efficient energy valley optimization approach for reconfiguring thermoelectric generator system under non-uniform heat distribution," Renewable Energy, Elsevier, vol. 217(C).
    4. Manuela Castañeda & Elkin I. Gutiérrez-Velásquez & Claudio E. Aguilar & Sergio Neves Monteiro & Andrés A. Amell & Henry A. Colorado, 2022. "Sustainability and Circular Economy Perspectives of Materials for Thermoelectric Modules," Sustainability, MDPI, vol. 14(10), pages 1-19, May.
    5. Gao, Junling & Tang, Kechen & Yan, Yonggao & Zhang, Shimin, 2020. "New method for quickly measuring the maximum conversion power of a thermoelectric module/generator," Energy, Elsevier, vol. 197(C).
    6. Yang, Bo & Zeng, Chunyuan & Li, Danyang & Guo, Zhengxun & Chen, Yijun & Shu, Hongchun & Cao, Pulin & Li, Zilin, 2022. "Improved immune genetic algorithm based TEG system reconfiguration under non-uniform temperature distribution," Applied Energy, Elsevier, vol. 325(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deasy, M.J. & Baudin, N. & O'Shaughnessy, S.M. & Robinson, A.J., 2017. "Simulation-driven design of a passive liquid cooling system for a thermoelectric generator," Applied Energy, Elsevier, vol. 205(C), pages 499-510.
    2. Shittu, Samson & Li, Guiqiang & Zhao, Xudong & Ma, Xiaoli, 2020. "Review of thermoelectric geometry and structure optimization for performance enhancement," Applied Energy, Elsevier, vol. 268(C).
    3. Liao, Xinzhong & Liu, Yuxuan & Ren, Jiahang & Guan, Liuping & Sang, Xuehao & Wang, Bowen & Zhang, Hang & Wang, Qiuwang & Ma, Ting, 2020. "Investigation of a double-PCM-based thermoelectric energy-harvesting device using temperature fluctuations in an ambient environment," Energy, Elsevier, vol. 202(C).
    4. Saurabh Yadav & Jie Liu & Man Sik Kong & Young Gyoon Yoon & Sung Chul Kim, 2021. "Heat Transfer Characteristics of Thermoelectric Generator System for Waste Heat Recovery from a Billet Casting Process: Experimental and Numerical Analysis," Energies, MDPI, vol. 14(3), pages 1-18, January.
    5. Björn Pfeiffelmann & Ali Cemal Benim & Franz Joos, 2021. "Water-Cooled Thermoelectric Generators for Improved Net Output Power: A Review," Energies, MDPI, vol. 14(24), pages 1-29, December.
    6. Kim, Taemin & Ko, Youngsu & Lee, Younghun & Cha, Cheolung & Kim, Namsu, 2020. "Experimental analysis of flexible thermoelectric generators used for self-powered devices," Energy, Elsevier, vol. 200(C).
    7. Zhang, Xin & Cai, Ling & Liao, Tianjun & Zhou, Yinghui & Zhao, Yingru & Chen, Jincan, 2018. "Exploiting the waste heat from an alkaline fuel cell via electrochemical cycles," Energy, Elsevier, vol. 142(C), pages 983-990.
    8. Kütt, Lauri & Millar, John & Karttunen, Antti & Lehtonen, Matti & Karppinen, Maarit, 2018. "Thermoelectric applications for energy harvesting in domestic applications and micro-production units. Part I: Thermoelectric concepts, domestic boilers and biomass stoves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 519-544.
    9. Ge, Ya & Lin, Yousheng & He, Qing & Wang, Wenhao & Chen, Jiechao & Huang, Si-Min, 2021. "Geometric optimization of segmented thermoelectric generators for waste heat recovery systems using genetic algorithm," Energy, Elsevier, vol. 233(C).
    10. Ezzat, M.F. & Dincer, I., 2019. "Development and exergetic assessment of a new hybrid vehicle incorporating gas turbine as powering option," Energy, Elsevier, vol. 170(C), pages 112-119.
    11. Li, Yanzhe & Wang, Shixue & Zhao, Yulong & Yue, Like, 2022. "Effect of thermoelectric modules with different characteristics on the performance of thermoelectric generators inserted in the central flow region with porous foam copper," Applied Energy, Elsevier, vol. 327(C).
    12. Luis Obregon & Guillermo Valencia & Jorge Duarte, 2019. "Study on the Applicability of Sustainable Development Policies in Electricity Generation Systems in Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 492-502.
    13. Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
    14. Hongkun Lv & Guoneng Li & Youqu Zheng & Jiangen Hu & Jian Li, 2018. "Compact Water-Cooled Thermoelectric Generator (TEG) Based on a Portable Gas Stove," Energies, MDPI, vol. 11(9), pages 1-19, August.
    15. Li, Jinghua & Fang, Jiakun & Zeng, Qing & Chen, Zhe, 2016. "Optimal operation of the integrated electrical and heating systems to accommodate the intermittent renewable sources," Applied Energy, Elsevier, vol. 167(C), pages 244-254.
    16. Ye-Qi Zhang & Jiao Sun & Guang-Xu Wang & Tian-Hu Wang, 2022. "Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design," Energies, MDPI, vol. 15(8), pages 1-18, April.
    17. Tian, Yuanyuan & Liu, Anbang & Wang, Junli & Zhou, Yajie & Bao, Chengpeng & Xie, Huaqing & Wu, Zihua & Wang, Yuanyuan, 2021. "Optimized output electricity of thermoelectric generators by matching phase change material and thermoelectric material for intermittent heat sources," Energy, Elsevier, vol. 233(C).
    18. Ge, Ya & Xiao, Qiyin & Wang, Wenhao & Lin, Yousheng & Huang, Si-Min, 2022. "Design of high-performance photovoltaic-thermoelectric hybrid systems using multi-objective genetic algorithm," Renewable Energy, Elsevier, vol. 200(C), pages 136-145.
    19. Luo, Ding & Wang, Ruochen & Yu, Wei & Zhou, Weiqi, 2020. "Parametric study of a thermoelectric module used for both power generation and cooling," Renewable Energy, Elsevier, vol. 154(C), pages 542-552.
    20. Zeeshan & Muhammad Uzair Mehmood & Sungbo Cho, 2021. "Optimization of a Thermomagnetic Heat Engine for Harvesting Low Grade Thermal Energy," Energies, MDPI, vol. 14(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:237:y:2019:i:c:p:671-681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.