IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v235y2019icp1381-1388.html
   My bibliography  Save this article

Effect of combustion technology and biogenic CO2 impact factor on global warming potential of wood-to-heat chains

Author

Listed:
  • Pelletier, Chloé
  • Rogaume, Yann
  • Dieckhoff, Léa
  • Bardeau, Guillaume
  • Pons, Marie-Noëlle
  • Dufour, Anthony

Abstract

In this work wood-to-heat chains are assessed on environmental and micro-economical aspects. Wood combustion produced various minor pollutants, which should be considered in life cycle assessment. For this purpose different wood combustion processes have been modeled under Aspen Plus® software in order to assess pollutant emissions (CO2, aromatic compounds, CO, etc.) based on industrial emission data and therefore to obtain a rigorous life cycle inventory. Different technologies are assessed for a fixed heating demand and hot water production of a typical French house: district heating fueled by wood chips, individual stoves or boilers fueled by wood logs or pellets. Electricity, natural gas, and fuel oil solutions complete the scenario set. The different heating solutions are compared in terms of their greenhouse gas emissions and of the cost of the final energy (including investment and operating costs). The important effect of minor pollutants (such as CO and volatile organic compounds) on the global warming potential of wood-to-heat chains is highlighted. The performance of wood scenarios compared to fossil-based ones is also highly dependent on the impact factor assumed for the biogenic CO2. The wood-based scenarios present a wide range of costs with pellet solutions being more expensive on investment and pellet production.

Suggested Citation

  • Pelletier, Chloé & Rogaume, Yann & Dieckhoff, Léa & Bardeau, Guillaume & Pons, Marie-Noëlle & Dufour, Anthony, 2019. "Effect of combustion technology and biogenic CO2 impact factor on global warming potential of wood-to-heat chains," Applied Energy, Elsevier, vol. 235(C), pages 1381-1388.
  • Handle: RePEc:eee:appene:v:235:y:2019:i:c:p:1381-1388
    DOI: 10.1016/j.apenergy.2018.11.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918317653
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.11.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bjart Holtsmark, 2014. "A comparison of the global warming effects of wood fuels and fossil fuels taking albedo into account," Discussion Papers 778, Statistics Norway, Research Department.
    2. Tonini, Davide & Astrup, Thomas, 2012. "LCA of biomass-based energy systems: A case study for Denmark," Applied Energy, Elsevier, vol. 99(C), pages 234-246.
    3. Smeets, Edward M.W. & Lewandowski, Iris M. & Faaij, André P.C., 2009. "The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1230-1245, August.
    4. Cherubini, Francesco & Strømman, Anders H. & Hertwich, Edgar, 2011. "Effects of boreal forest management practices on the climate impact of CO2 emissions from bioenergy," Ecological Modelling, Elsevier, vol. 223(1), pages 59-66.
    5. Nian, Victor, 2016. "The carbon neutrality of electricity generation from woody biomass and coal, a critical comparative evaluation," Applied Energy, Elsevier, vol. 179(C), pages 1069-1080.
    6. Ryan M. Bright & Anders Hammer Strømman & Troy R. Hawkins, 2010. "Environmental Assessment of Wood‐Based Biofuel Production and Consumption Scenarios in Norway," Journal of Industrial Ecology, Yale University, vol. 14(3), pages 422-439, June.
    7. Dias, Goretty M. & Ayer, Nathan W. & Kariyapperuma, Kumudinie & Thevathasan, Naresh & Gordon, Andrew & Sidders, Derek & Johannesson, Gudmundur H., 2017. "Life cycle assessment of thermal energy production from short-rotation willow biomass in Southern Ontario, Canada," Applied Energy, Elsevier, vol. 204(C), pages 343-352.
    8. Pierobon, Francesca & Zanetti, Michela & Grigolato, Stefano & Sgarbossa, Andrea & Anfodillo, Tommaso & Cavalli, Raffaele, 2015. "Life cycle environmental impact of firewood production – A case study in Italy," Applied Energy, Elsevier, vol. 150(C), pages 185-195.
    9. Geoffrey Guest & Francesco Cherubini & Anders Strømman, 2013. "Climate impact potential of utilizing forest residues for bioenergy in Norway," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 18(8), pages 1089-1108, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Zdravko Pandur & Marin Bačić & Marijan Šušnjar & Matija Landekić & Mario Šporčić & Iva Ištok, 2024. "Energy Gain and Carbon Footprint in the Production of Bioelectricity and Wood Pellets in Croatia," Sustainability, MDPI, vol. 16(9), pages 1-14, May.
    3. Hidalgo, D. & Sanz-Bedate, S. & Martín-Marroquín, J.M. & Castro, J. & Antolín, G., 2020. "Selective separation of CH4 and CO2 using membrane contactors," Renewable Energy, Elsevier, vol. 150(C), pages 935-942.
    4. Lin, Boqiang & Teng, Yuqiang, 2022. "Structural path and decomposition analysis of sectoral carbon emission changes in China," Energy, Elsevier, vol. 261(PB).
    5. Kuznetsov, G.V. & Malyshev, D. Yu & Syrodoy, S.V. & Gutareva, N. Yu & Purin, M.V. & Kostoreva, Zh. A., 2022. "Justification of the use of forest waste in the power industry as one of the components OF BIO-coal-water suspension fuel," Energy, Elsevier, vol. 239(PA).
    6. Wentao Li & Mingfeng Wang & Fanbin Meng & Yifei Zhang & Bo Zhang, 2022. "A Review on the Effects of Pretreatment and Process Parameters on Properties of Pellets," Energies, MDPI, vol. 15(19), pages 1-23, October.
    7. Hao, Hongke & Dai, Li & Wang, Kui & Xu, Junming & Liu, Weiguo, 2021. "An updated framework for climate change impact assessment of bioenergy and an application in poplar biomass," Applied Energy, Elsevier, vol. 299(C).
    8. Flavio Scrucca & Grazia Barberio & Laura Cutaia & Caterina Rinaldi, 2023. "Woodchips from Forest Residues as a Sustainable and Circular Biofuel for Electricity Production: Evidence from an Environmental Life Cycle Assessment," Energies, MDPI, vol. 17(1), pages 1-16, December.
    9. Zadravec, Tomas & Yin, Chungen & Kokalj, Filip & Samec, Niko & Rajh, Boštjan, 2020. "The impacts of different profiles of the grate inlet conditions on freeboard CFD in a waste wood-fired grate boiler," Applied Energy, Elsevier, vol. 268(C).
    10. Zhao, Yunlei & Jin, Bo & Luo, Xiao & Liang, Zhiwu, 2021. "Thermodynamic evaluation and experimental investigation of CaO-assisted Fe-based chemical looping reforming process for syngas production," Applied Energy, Elsevier, vol. 288(C).
    11. Martín-Gamboa, Mario & Marques, Pedro & Freire, Fausto & Arroja, Luís & Dias, Ana Cláudia, 2020. "Life cycle assessment of biomass pellets: A review of methodological choices and results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    2. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Evgeniy Kirichenko & Ksenia Kirichenko & Anna Kirichenko, 2024. "List of Issues That Require Legal Regulation as Part of the Renewable Energy Regulation in Component States of Federation," Energies, MDPI, vol. 17(3), pages 1-24, February.
    4. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    5. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    6. Vyn, Richard J. & Virani, Tasneem & Deen, Bill, 2012. "Examining the economic feasibility of miscanthus in Ontario: An application to the greenhouse industry," Energy Policy, Elsevier, vol. 50(C), pages 669-676.
    7. Huang, Y. & McIlveen-Wright, D.R. & Rezvani, S. & Huang, M.J. & Wang, Y.D. & Roskilly, A.P. & Hewitt, N.J., 2013. "Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings," Applied Energy, Elsevier, vol. 112(C), pages 518-525.
    8. Yang, Bo & Wei, Yi-Ming & Hou, Yunbing & Li, Hui & Wang, Pengtao, 2019. "Life cycle environmental impact assessment of fuel mix-based biomass co-firing plants with CO2 capture and storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    9. Malça, João & Coelho, António & Freire, Fausto, 2014. "Environmental life-cycle assessment of rapeseed-based biodiesel: Alternative cultivation systems and locations," Applied Energy, Elsevier, vol. 114(C), pages 837-844.
    10. Miranowski, John & Rosburg, Alicia, 2010. "An Economic Breakeven Model of Cellulosic Feedstock Production and Ethanol Conversion with Implied Carbon Pricing," Staff General Research Papers Archive 13166, Iowa State University, Department of Economics.
    11. Rahman, Md. Mizanur & B. Mostafiz, Suraiya & Paatero, Jukka V. & Lahdelma, Risto, 2014. "Extension of energy crops on surplus agricultural lands: A potentially viable option in developing countries while fossil fuel reserves are diminishing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 108-119.
    12. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak, 2021. "Economic Evaluation of the Production of Perennial Crops for Energy Purposes—A Review," Energies, MDPI, vol. 14(21), pages 1-16, November.
    13. van der Hilst, F. & Lesschen, J.P. & van Dam, J.M.C. & Riksen, M. & Verweij, P.A. & Sanders, J.P.M. & Faaij, A.P.C., 2012. "Spatial variation of environmental impacts of regional biomass chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2053-2069.
    14. Chiara Quintaliani & Francesca Merli & Costanza Vittoria Fiorini & Marco Corradi & Emanuela Speranzini & Cinzia Buratti, 2022. "Vegetal Fiber Additives in Mortars: Experimental Characterization of Thermal and Acoustic Properties," Sustainability, MDPI, vol. 14(3), pages 1-12, January.
    15. van der Hilst, F. & Dornburg, V. & Sanders, J.P.M. & Elbersen, B. & Graves, A. & Turkenburg, W.C. & Elbersen, H.W. & van Dam, J.M.C. & Faaij, A.P.C., 2010. "Potential, spatial distribution and economic performance of regional biomass chains: The North of the Netherlands as example," Agricultural Systems, Elsevier, vol. 103(7), pages 403-417, September.
    16. Nian, Victor & Yuan, Jun, 2017. "A method for analysis of maritime transportation systems in the life cycle approach – The oil tanker example," Applied Energy, Elsevier, vol. 206(C), pages 1579-1589.
    17. Chen, Jiandong & Xu, Chong & Wang, Yuzhi & Li, Ding & Song, Malin, 2021. "Carbon neutrality based on vegetation carbon sequestration for China's cities and counties: Trend, inequality and driver," Resources Policy, Elsevier, vol. 74(C).
    18. Raja Chowdhury & Nidia Caetano & Matthew J. Franchetti & Kotnoor Hariprasad, 2023. "Life Cycle Based GHG Emissions from Algae Based Bioenergy with a Special Emphasis on Climate Change Indicators and Their Uses in Dynamic LCA: A Review," Sustainability, MDPI, vol. 15(3), pages 1-19, January.
    19. Farrelly, Damien J. & Everard, Colm D. & Fagan, Colette C. & McDonnell, Kevin P., 2013. "Carbon sequestration and the role of biological carbon mitigation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 712-727.
    20. Witzel, Carl-Philipp & Finger, Robert, 2016. "Economic evaluation of Miscanthus production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 681-696.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:235:y:2019:i:c:p:1381-1388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.