IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v228y2018icp42-56.html
   My bibliography  Save this article

Development of a new jet fuel surrogate and its associated reaction mechanism coupled with a multistep soot model for diesel engine combustion

Author

Listed:
  • Yu, Wenbin
  • Tay, Kunlin
  • Zhao, Feiyang
  • Yang, Wenming
  • Li, Han
  • Xu, Hongpeng

Abstract

A new jet fuel surrogate was developed in this work by emulating real jet fuel properties including physical, gas phase chemical properties and threshold sooting index (TSI). An intelligent optimization methodology was proposed to calculate the species composition that inherently satisfies both the physical and chemical characteristics as well as sooting tendency. Eight properties were selected as the target properties for the jet fuel surrogate development, including liquid density, viscosity, surface tension, cetane number (CN), hydrogen carbon (H/C) ratio, molecular weight (MW), lower heating value (LHV) and TSI. As a result, the CN, H/C ratio, LHV, TSI and density of the new jet fuel surrogate are reproduced excellently with very little deviations within 3%. The averaged deviation of viscosity is −6.318% and the deviations of MW is 9.776%. As the highest deviation among all properties, the averaged deviation of surface tension is 11.76%. Based on the newly developed jet fuel surrogate, a skeletal jet fuel surrogate mechanism with 5 components including decalin, n-dodecane, iso-cetane, iso-octane and toluene was developed. The skeletal jet fuel surrogate mechanism was significantly compacted into 74 species and 189 reactions by describing the chemistries for the oxidation of large molecules C4–Cn and small H2/CO/C1 molecules respectively, which makes it practical to be used for 3-D engine combustion simulations. The validations of ignition delay times present reasonable agreement between experiment and predictions over a wide range of equivalence ratios (0.5–2.0) and pressures (8–30 atm), except for a shift of negative temperature coefficient (NTC) region towards higher temperatures at Φ = 1.5, 20 atm: in the simulation the NTC region is from 830 K to 950 K while in the experiment the NTC region is from 740 K to 890 K. The predicted species concentrations can reproduce the trend of the experimental data, especially for O2, CO and CO2. The simulated laminar flame speed at 400 K and 470 K are with absolute averaged deviations of 3.5% and 4.06% respectively. The constant volume spray and combustion validations are reasonably good. In the engine combustion validations, a multistep soot model was embedded into the new jet fuel surrogate mechanism. The predicted in-cylinder pressure can reproduce the experimental data, expect for small deviations after the peak pressure (the averaged deviation is around 6.2% after the peak pressure). The embedded soot model can well reproduce the trend of the experimental data. It can be concluded that this new jet fuel surrogate mechanism is compact and robust for the utilization in diesel engine combustion simulation.

Suggested Citation

  • Yu, Wenbin & Tay, Kunlin & Zhao, Feiyang & Yang, Wenming & Li, Han & Xu, Hongpeng, 2018. "Development of a new jet fuel surrogate and its associated reaction mechanism coupled with a multistep soot model for diesel engine combustion," Applied Energy, Elsevier, vol. 228(C), pages 42-56.
  • Handle: RePEc:eee:appene:v:228:y:2018:i:c:p:42-56
    DOI: 10.1016/j.apenergy.2018.06.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918309425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lee, Jeongwoo & Lee, Jungyeon & Chu, Sanghyun & Choi, Hoimyung & Min, Kyoungdoug, 2015. "Emission reduction potential in a light-duty diesel engine fueled by JP-8," Energy, Elsevier, vol. 89(C), pages 92-99.
    2. Yu, Wenbin & Yang, Wenming & Zhao, Feiyang & Zhou, Dezhi & Tay, Kunlin & Mohan, Balaji, 2017. "Development of a three-step hybrid simulation approach (THSA) for engine combustion investigation coupled with a multistep phenomenon soot model and energy balance analysis," Applied Energy, Elsevier, vol. 185(P1), pages 482-496.
    3. Mohan, Balaji & Yang, Wenming & Chou, Siaw kiang, 2013. "Fuel injection strategies for performance improvement and emissions reduction in compression ignition engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 664-676.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Guibin & Ruan, Can & Li, Zilong & Huang, Guan & Zhou, Qiyan & Qian, Yong & Lu, Xingcai, 2020. "Investigation of engine performance for alcohol/kerosene blends as in spark-ignition aviation piston engine," Applied Energy, Elsevier, vol. 268(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lei Zhang & Tiexiong Su & Yangang Zhang & Fukang Ma & Jinguan Yin & Yaonan Feng, 2017. "Numerical Investigation of the Effects of Split Injection Strategies on Combustion and Emission in an Opposed-Piston, Opposed-Cylinder (OPOC) Two-Stroke Diesel Engine," Energies, MDPI, vol. 10(5), pages 1-17, May.
    2. Moon, Seoksu & Huang, Weidi & Li, Zhilong & Wang, Jin, 2016. "End-of-injection fuel dribble of multi-hole diesel injector: Comprehensive investigation of phenomenon and discussion on control strategy," Applied Energy, Elsevier, vol. 179(C), pages 7-16.
    3. Yu, Wenbin & Zhao, Feiyang & Yang, Wenming, 2020. "Qualitative analysis of particulate matter emission from diesel engine fueled with Jet A-1 under multivariate combustion boundaries by principal component analysis," Applied Energy, Elsevier, vol. 269(C).
    4. Hamedi, Mohammad Reza & Doustdar, Omid & Tsolakis, Athanasios & Hartland, Jonathan, 2021. "Energy-efficient heating strategies of diesel oxidation catalyst for low emissions vehicles," Energy, Elsevier, vol. 230(C).
    5. Serrano, J. & Jiménez-Espadafor, F.J. & Lora, A. & Modesto-López, L. & Gañán-Calvo, A. & López-Serrano, J., 2019. "Experimental analysis of NOx reduction through water addition and comparison with exhaust gas recycling," Energy, Elsevier, vol. 168(C), pages 737-752.
    6. Mikulski, Maciej & Ambrosewicz-Walacik, Marta & Duda, Kamil & Hunicz, Jacek, 2020. "Performance and emission characterization of a common-rail compression-ignition engine fuelled with ternary mixtures of rapeseed oil, pyrolytic oil and diesel," Renewable Energy, Elsevier, vol. 148(C), pages 739-755.
    7. Quach-Nhu Yhcmute & Nguyen-Xuan Khoa & Ocktaeck Lim, 2021. "A Study on the Effect of Ignition Timing on Residual Gas, Effective Release Energy, and Engine Emissions of a V-Twin Engine," Energies, MDPI, vol. 14(15), pages 1-18, July.
    8. Wenyu Gu & Wanhua Su, 2023. "Study on the Effects of Exhaust Gas Recirculation and Fuel Injection Strategy on Transient Process Performance of Diesel Engines," Sustainability, MDPI, vol. 15(16), pages 1-21, August.
    9. Mohan, Balaji & Yang, Wenming & Raman, Vallinayagam & Sivasankaralingam, Vedharaj & Chou, Siaw Kiang, 2014. "Optimization of biodiesel fueled engine to meet emission standards through varying nozzle opening pressure and static injection timing," Applied Energy, Elsevier, vol. 130(C), pages 450-457.
    10. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    11. Ming Wen & Yufeng Li & Weiqing Zhu & Rulou Cao & Kai Sun, 2022. "Experimental Study on Effects of RCSL and RCTL Combustion Chamber for Combustion Process of Highly Intensified Diesel Engine," Energies, MDPI, vol. 15(17), pages 1-13, August.
    12. Xuewen Zhang & Xiang Huang & Peiyong Ni & Xiang Li, 2023. "Strategies to Reduce Emissions from Diesel Engines under Cold Start Conditions: A Review," Energies, MDPI, vol. 16(13), pages 1-21, July.
    13. Hasan AYDOGAN & Emin Cagatay ALTINOK, 2019. "Effects of Using JP8-Diesel Fuel Mixtures in a Pump Injector Engine on Engine Emissions," Proceedings of International Academic Conferences 9412216, International Institute of Social and Economic Sciences.
    14. Wahono, Bambang & Setiawan, Ardhika & Lim, Ocktaeck, 2021. "Effect of the intake port flow direction on the stability and characteristics of the in-cylinder flow field of a small motorcycle engine," Applied Energy, Elsevier, vol. 288(C).
    15. Li, Xiangrong & Gao, Haobu & Zhao, Luming & Zhang, Zheng & He, Xu & Liu, Fushui, 2016. "Combustion and emission performance of a split injection diesel engine in a double swirl combustion system," Energy, Elsevier, vol. 114(C), pages 1135-1146.
    16. Zhang, Qiankun & Xia, Jin & He, Zhuoyao & Wang, Jianping & Liu, Rui & Zheng, Liang & Qian, Yong & Ju, Dehao & Lu, Xingcai, 2021. "Experimental study on spray characteristics of six-component diesel surrogate fuel under sub/trans/supercritical conditions with different injection pressures," Energy, Elsevier, vol. 218(C).
    17. Chang Zhai & Feixiang Chang & Yu Jin & Hongliang Luo, 2023. "Investigations on the Diesel Spray Characteristic and Tip Penetration Model of Multi-Hole Injector with Micro-Hole under Ultra-High Injection Pressure," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    18. Mohan, Balaji & Yang, Wenming & Yu, Wenbin & Tay, Kun Lin & Chou, Siaw Kiang, 2015. "Numerical investigation on the effects of injection rate shaping on combustion and emission characteristics of biodiesel fueled CI engine," Applied Energy, Elsevier, vol. 160(C), pages 737-745.
    19. Olmeda, Pablo & Martín, Jaime & Novella, Ricardo & Carreño, Ricardo, 2015. "An adapted heat transfer model for engines with tumble motion," Applied Energy, Elsevier, vol. 158(C), pages 190-202.
    20. Tay, Kun Lin & Yang, Wenming & Li, Jing & Zhou, Dezhi & Yu, Wenbin & Zhao, Feiyang & Chou, Siaw Kiang & Mohan, Balaji, 2017. "Numerical investigation on the combustion and emissions of a kerosene-diesel fueled compression ignition engine assisted by ammonia fumigation," Applied Energy, Elsevier, vol. 204(C), pages 1476-1488.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:228:y:2018:i:c:p:42-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.