IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v334y2023ics0306261923001046.html
   My bibliography  Save this article

Coalitional model predictive control of parabolic-trough solar collector fields with population-dynamics assistance

Author

Listed:
  • Sánchez-Amores, Ana
  • Martinez-Piazuelo, Juan
  • Maestre, José M.
  • Ocampo-Martinez, Carlos
  • Camacho, Eduardo F.
  • Quijano, Nicanor

Abstract

Parabolic-trough solar collector fields are large-scale systems, so the application of centralized optimization-based control methods to these systems is often not suitable for real-time control. As such, this paper formulates a novel coalitional control approach as an appropriate alternative to the centralized scheme. The key idea is to split the overall solar collector field into smaller subsystems, each of them governed by a local controller. Then, controllers are clustered into coalitions to solve a local optimization-based problem related to the corresponding subset of subsystems, so that an approximate solution of the original centralized problem can be obtained in a decentralized fashion. However, the operational constraints of the solar collector field couple the optimization problems of the multiple coalitions, thus limiting the ability to solve them in a fully decentralized manner. To overcome this issue, a novel population-dynamics-assisted resource allocation strategy is proposed as a mechanism to decouple the local optimization problems of the multiple coalitions. The proposed coalitional methodology allows to solve the multiple local subproblems in parallel, hence reducing the overall computational burden, while guaranteeing the satisfaction of the operational constraints and without significantly compromising the overall performance. The effectiveness of proposed approach is shown through numerical simulations of a 10- and 100-loop version of the ACUREX solar collector field of Plataforma Solar de Almería, Spain.

Suggested Citation

  • Sánchez-Amores, Ana & Martinez-Piazuelo, Juan & Maestre, José M. & Ocampo-Martinez, Carlos & Camacho, Eduardo F. & Quijano, Nicanor, 2023. "Coalitional model predictive control of parabolic-trough solar collector fields with population-dynamics assistance," Applied Energy, Elsevier, vol. 334(C).
  • Handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923001046
    DOI: 10.1016/j.apenergy.2023.120740
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923001046
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120740?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ruiz-Moreno, Sara & Frejo, José Ramón D. & Camacho, Eduardo F., 2021. "Model predictive control based on deep learning for solar parabolic-trough plants," Renewable Energy, Elsevier, vol. 180(C), pages 193-202.
    2. Vasallo, Manuel Jesús & Bravo, José Manuel, 2016. "A MPC approach for optimal generation scheduling in CSP plants," Applied Energy, Elsevier, vol. 165(C), pages 357-370.
    3. Zhang, H.L. & Baeyens, J. & Degrève, J. & Cacères, G., 2013. "Concentrated solar power plants: Review and design methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 466-481.
    4. Masero, Eva & Maestre, José M. & Camacho, Eduardo F., 2022. "Market-based clustering of model predictive controllers for maximizing collected energy by parabolic-trough solar collector fields," Applied Energy, Elsevier, vol. 306(PA).
    5. Islam, Md Tasbirul & Huda, Nazmul & Abdullah, A.B. & Saidur, R., 2018. "A comprehensive review of state-of-the-art concentrating solar power (CSP) technologies: Current status and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 987-1018.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jiaxing & Li, Yiguo & Zhang, Junli, 2023. "Coordinated control of concentrated solar power systems with indirect molten salt storage considering operation mode switching: Using switching model predictive control," Energy, Elsevier, vol. 268(C).
    2. Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
    3. Jayathunga, D.S. & Karunathilake, H.P. & Narayana, M. & Witharana, S., 2024. "Phase change material (PCM) candidates for latent heat thermal energy storage (LHTES) in concentrated solar power (CSP) based thermal applications - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    4. Abbasi, H.N. & Zeeshan, Muhammad, 2023. "An integrated Geographic Information System and Analytical Hierarchy process based approach for site suitability analysis of on-grid hybrid concentrated solar-biomass powerplant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    5. Chanfreut, Paula & Maestre, José M. & Gallego, Antonio J. & Annaswamy, Anuradha M. & Camacho, Eduardo F., 2023. "Clustering-based model predictive control of solar parabolic trough plants," Renewable Energy, Elsevier, vol. 216(C).
    6. Xiao, Tingyu & Liu, Chao & Wang, Xurong & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin & Li, Xiaoxiao, 2022. "Life cycle assessment of the solar thermal power plant integrated with air-cooled supercritical CO2 Brayton cycle," Renewable Energy, Elsevier, vol. 182(C), pages 119-133.
    7. Tiwari, Vivek & Rai, Aakash C. & Srinivasan, P., 2021. "Parametric analysis and optimization of a latent heat thermal energy storage system for concentrated solar power plants under realistic operating conditions," Renewable Energy, Elsevier, vol. 174(C), pages 305-319.
    8. Palacios, A. & Barreneche, C. & Navarro, M.E. & Ding, Y., 2020. "Thermal energy storage technologies for concentrated solar power – A review from a materials perspective," Renewable Energy, Elsevier, vol. 156(C), pages 1244-1265.
    9. Dettori, S. & Iannino, V. & Colla, V. & Signorini, A., 2018. "An adaptive Fuzzy logic-based approach to PID control of steam turbines in solar applications," Applied Energy, Elsevier, vol. 227(C), pages 655-664.
    10. Miguel Ángel Reyes-Belmonte, 2020. "A Bibliometric Study on Integrated Solar Combined Cycles (ISCC), Trends and Future Based on Data Analytics Tools," Sustainability, MDPI, vol. 12(19), pages 1-29, October.
    11. Joseph Oyekale & Mario Petrollese & Vittorio Tola & Giorgio Cau, 2020. "Impacts of Renewable Energy Resources on Effectiveness of Grid-Integrated Systems: Succinct Review of Current Challenges and Potential Solution Strategies," Energies, MDPI, vol. 13(18), pages 1-48, September.
    12. Tarun Kumar Aseri & Chandan Sharma & Tara C. Kandpal, 2022. "Condenser cooling technologies for concentrating solar power plants: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4511-4565, April.
    13. Paloma Martínez-Merino & Rodrigo Alcántara & Teresa Aguilar & Juan Jesús Gallardo & Iván Carrillo-Berdugo & Roberto Gómez-Villarejo & Mabel Rodríguez-Fernández & Javier Navas, 2019. "Stability and Thermal Properties Study of Metal Chalcogenide-Based Nanofluids for Concentrating Solar Power," Energies, MDPI, vol. 12(24), pages 1-11, December.
    14. Mohammadi, Kasra & Khanmohammadi, Saber & Khorasanizadeh, Hossein & Powell, Kody, 2020. "A comprehensive review of solar only and hybrid solar driven multigeneration systems: Classifications, benefits, design and prospective," Applied Energy, Elsevier, vol. 268(C).
    15. Gholaminejad, Tahereh & Khaki-Sedigh, Ali, 2022. "Stable deep Koopman model predictive control for solar parabolic-trough collector field," Renewable Energy, Elsevier, vol. 198(C), pages 492-504.
    16. Avila-Marin, A.L. & Fernandez-Reche, J. & Martinez-Tarifa, A., 2019. "Modelling strategies for porous structures as solar receivers in central receiver systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 15-33.
    17. Velarde, Pablo & Gallego, Antonio J. & Bordons, Carlos & Camacho, Eduardo F., 2023. "Scenario-based model predictive control for energy scheduling in a parabolic trough concentrating solar plant with thermal storage," Renewable Energy, Elsevier, vol. 206(C), pages 1228-1238.
    18. José M. Cardemil & Allan R. Starke & Adriana Zurita & Carlos Mata‐Torres & Rodrigo Escobar, 2021. "Integration schemes for hybrid and polygeneration concentrated solar power plants," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(6), November.
    19. Keyif, Enes & Hornung, Michael & Zhu, Wanshan, 2020. "Optimal configurations and operations of concentrating solar power plants under new market trends," Applied Energy, Elsevier, vol. 270(C).
    20. Jiang, Kaijun & Du, Xiaoze & Zhang, Qiang & Kong, Yanqiang & Xu, Chao & Ju, Xing, 2021. "Review on gas-solid fluidized bed particle solar receivers applied in concentrated solar applications: Materials, configurations and methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:334:y:2023:i:c:s0306261923001046. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.