IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp838-848.html
   My bibliography  Save this article

Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production

Author

Listed:
  • Westerholm, M.
  • Isaksson, S.
  • Karlsson Lindsjö, O.
  • Schnürer, A.

Abstract

The operating temperature in anaerobic digestion strongly affects biogas yield, process stability and the potential for process optimisation. However, many questions remain on how to manage process operation for optimized microbial community adaptation following temperature changes. A long-term anaerobic digestion experiment was conducted to determine temperature-related issues in operative full-scale biogas plants and to evaluate optimisation potential and links to microbial community structure and responses. Four digesters fed household and slaughterhouse waste were operated in sets of two, at 37 °C or 52 °C, followed by a gradual increase or decrease in temperature in one digester in each set. Stability and flexibility of the digesters were then assessed by step-wise increases in organic loading rate (OLR) from 3 to 7 g VS/(L day), concurrently with decreased hydraulic retention time from 33–40 days to 14–17 days. Transition of operating temperature regime was possible, irrespective of starting temperature. However, slight temporary instability occurred at 42–44 °C and for the thermophilic to mesophilic process a period of adaptation was required to overcome this imbalance. The digesters with constant temperature and the mesophilic-to-thermophilic digester remained stable at the target OLR, demonstrating considerable optimisation potential for the large-scale biogas plants investigated. However, the digester that was changed from thermophilic to mesophilic conditions failed at 6 g VS/(L day). Comparisons of biological and chemical parameters suggested that this failure was caused by a lag in resilience of the acetate and propionate-degrading populations inherited from the community shaped by initial operation in thermophilic conditions. Taken together, these results demonstrate that the existing biogas plants are operating below capacity and that, depending on temperature, the annual energy production could be increased from 26–28 to 59–65 GWh through increasing OLR from 3 to 7 g VS/(L day). However, the results also highlight the importance of careful management and the risks when applying strategies not fully evaluated for the specific system. To our knowledge, this is the first study to demonstrate process performance, optimisation potential and microbial community adaptability to temperature changes in continuously fed anaerobic digesters under both increasing and decreasing operating temperature. The results could be used to guide operation management under temperature changes and increasing OLR in industrial-scale biogas processes.

Suggested Citation

  • Westerholm, M. & Isaksson, S. & Karlsson Lindsjö, O. & Schnürer, A., 2018. "Microbial community adaptability to altered temperature conditions determines the potential for process optimisation in biogas production," Applied Energy, Elsevier, vol. 226(C), pages 838-848.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:838-848
    DOI: 10.1016/j.apenergy.2018.06.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918309152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grim, Johanna & Malmros, Peter & Schnürer, Anna & Nordberg, Åke, 2015. "Comparison of pasteurization and integrated thermophilic sanitation at a full-scale biogas plant – Heat demand and biogas production," Energy, Elsevier, vol. 79(C), pages 419-427.
    2. Westerholm, Maria & Moestedt, Jan & Schnürer, Anna, 2016. "Biogas production through syntrophic acetate oxidation and deliberate operating strategies for improved digester performance," Applied Energy, Elsevier, vol. 179(C), pages 124-135.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andersson, Johanna & Helander-Claesson, Jonas & Olsson, Jesper, 2020. "Study on reduced process temperature for energy optimisation in mesophilic digestion: A lab to full-scale study," Applied Energy, Elsevier, vol. 271(C).
    2. Kovalovszki, Adam & Treu, Laura & Ellegaard, Lars & Luo, Gang & Angelidaki, Irini, 2020. "Modeling temperature response in bioenergy production: Novel solution to a common challenge of anaerobic digestion," Applied Energy, Elsevier, vol. 263(C).
    3. Nie, Erqi & He, Pinjing & Zhang, Hua & Hao, Liping & Shao, Liming & Lü, Fan, 2021. "How does temperature regulate anaerobic digestion?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Han, Yongming & Li, Zhiyi & Wei, Tingting & Zuo, Xiaoyu & Liu, Min & Ma, Bo & Geng, Zhiqiang, 2024. "Production capacity prediction based response conditions optimization of straw reforming using attention-enhanced convolutional LSTM integrating data expansion," Applied Energy, Elsevier, vol. 365(C).
    5. Susanne Theuerl & Christiane Herrmann & Monika Heiermann & Philipp Grundmann & Niels Landwehr & Ulrich Kreidenweis & Annette Prochnow, 2019. "The Future Agricultural Biogas Plant in Germany: A Vision," Energies, MDPI, vol. 12(3), pages 1-32, January.
    6. Elena Holl & Anastasia Oskina & Urs Baier & Andreas Lemmer, 2023. "Optimization of Thermodynamic Parameters of the Biological Hydrogen Methanation in a Trickle-Bed Reactor for the Conditioning of Biogas to Biomethane," Energies, MDPI, vol. 16(12), pages 1-13, June.
    7. Mariana Murillo-Roos & Lorena Uribe-Lorío & Paola Fuentes-Schweizer & Daniela Vidaurre-Barahona & Laura Brenes-Guillén & Ivannia Jiménez & Tatiana Arguedas & Wei Liao & Lidieth Uribe, 2022. "Biogas Production and Microbial Communities of Mesophilic and Thermophilic Anaerobic Co-Digestion of Animal Manures and Food Wastes in Costa Rica," Energies, MDPI, vol. 15(9), pages 1-16, April.
    8. Lu, Zhihao & Yin, Di & Chen, Peng & Wang, Hongzhen & Yang, Yuhang & Huang, Guangtuan & Cai, Lankun & Zhang, Lehua, 2020. "Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells," Applied Energy, Elsevier, vol. 268(C).
    9. Susanne Theuerl & Johanna Klang & Annette Prochnow, 2019. "Process Disturbances in Agricultural Biogas Production—Causes, Mechanisms and Effects on the Biogas Microbiome: A Review," Energies, MDPI, vol. 12(3), pages 1-20, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qi, Chuanren & Cao, Dingge & Gao, Xingzu & Jia, Sumeng & Yin, Rongrong & Nghiem, Long D. & Li, Guoxue & Luo, Wenhai, 2023. "Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste," Applied Energy, Elsevier, vol. 351(C).
    2. Bi, Shaojie & Westerholm, Maria & Hu, Wanrong & Mahdy, Ahmed & Dong, Taili & Sun, Yingcai & Qiao, Wei & Dong, Renjie, 2021. "The metabolic performance and microbial communities of anaerobic digestion of chicken manure under stressed ammonia condition: A case study of a 10-year successful biogas plant," Renewable Energy, Elsevier, vol. 167(C), pages 644-651.
    3. Yapeng Song & Wei Qiao & Jiahao Zhang & Renjie Dong, 2023. "Process Performance and Functional Microbial Community in the Anaerobic Digestion of Chicken Manure: A Review," Energies, MDPI, vol. 16(12), pages 1-22, June.
    4. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Andersson, Johanna & Helander-Claesson, Jonas & Olsson, Jesper, 2020. "Study on reduced process temperature for energy optimisation in mesophilic digestion: A lab to full-scale study," Applied Energy, Elsevier, vol. 271(C).
    6. Solli, Linn & Schnürer, Anna & Horn, Svein J., 2018. "Process performance and population dynamics of ammonium tolerant microorganisms during co-digestion of fish waste and manure," Renewable Energy, Elsevier, vol. 125(C), pages 529-536.
    7. Wu, Di & Li, Lei & Peng, Yun & Yang, Pingjin & Peng, Xuya & Sun, Yongming & Wang, Xiaoming, 2021. "State indicators of anaerobic digestion: A critical review on process monitoring and diagnosis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Ershad Ullah Khan & Åke Nordberg & Peter Malmros, 2022. "Waste Heat Driven Integrated Membrane Distillation for Concentrating Nutrients and Process Water Recovery at a Thermophilic Biogas Plant," Sustainability, MDPI, vol. 14(20), pages 1-21, October.
    9. Vishal Ahuja & Arvind Kumar Bhatt & Balasubramani Ravindran & Yung-Hun Yang & Shashi Kant Bhatia, 2023. "A Mini-Review on Syngas Fermentation to Bio-Alcohols: Current Status and Challenges," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    10. Ankita Das & Sandeep Das & Nandita Das & Prisha Pandey & Birson Ingti & Vladimir Panchenko & Vadim Bolshev & Andrey Kovalev & Piyush Pandey, 2023. "Advancements and Innovations in Harnessing Microbial Processes for Enhanced Biogas Production from Waste Materials," Agriculture, MDPI, vol. 13(9), pages 1-34, August.
    11. Di Capua, Francesco & Spasiano, Danilo & Giordano, Andrea & Adani, Fabrizio & Fratino, Umberto & Pirozzi, Francesco & Esposito, Giovanni, 2020. "High-solid anaerobic digestion of sewage sludge: challenges and opportunities," Applied Energy, Elsevier, vol. 278(C).
    12. Fuchs, Werner & Wang, Xuemei & Gabauer, Wolfgang & Ortner, Markus & Li, Zifu, 2018. "Tackling ammonia inhibition for efficient biogas production from chicken manure: Status and technical trends in Europe and China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 186-199.
    13. Bi, Shaojie & Hong, Xiujie & Yang, Hongzhi & Yu, Xinhui & Fang, Shumei & Bai, Yan & Liu, Jinli & Gao, Yamei & Yan, Lei & Wang, Weidong & Wang, Yanjie, 2020. "Effect of hydraulic retention time on anaerobic co-digestion of cattle manure and food waste," Renewable Energy, Elsevier, vol. 150(C), pages 213-220.
    14. Ni, Ping & Lyu, Tao & Sun, Hao & Dong, Renjie & Wu, Shubiao, 2017. "Liquid digestate recycled utilization in anaerobic digestion of pig manure: Effect on methane production, system stability and heavy metal mobilization," Energy, Elsevier, vol. 141(C), pages 1695-1704.
    15. Yao, Yiqing & Yu, Liang & Ghogare, Rishikesh & Dunsmoor, Alexander & Davaritouchaee, Maryam & Chen, Shulin, 2017. "Simultaneous ammonia stripping and anaerobic digestion for efficient thermophilic conversion of dairy manure at high solids concentration," Energy, Elsevier, vol. 141(C), pages 179-188.
    16. Okoro-Shekwaga, Cynthia Kusin & Ross, Andrew Barry & Camargo-Valero, Miller Alonso, 2019. "Improving the biomethane yield from food waste by boosting hydrogenotrophic methanogenesis," Applied Energy, Elsevier, vol. 254(C).
    17. Li, Yeqing & Jing, Zhangmu & Pan, Junting & Luo, Gang & Feng, Lu & Jiang, Hao & Zhou, Hongjun & Xu, Quan & Lu, Yanjuan & Liu, Hongbin, 2022. "Multi-omics joint analysis of the effect of temperature on microbial communities, metabolism, and genetics in full-scale biogas reactors with food waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Song, Yapeng & Hu, Wanrong & Qiao, Wei & Westerholm, Maria & Wandera, Simon M. & Dong, Renjie, 2022. "Upgrading the performance of high solids feeding anaerobic digestion of chicken manure under extremely high ammonia level," Renewable Energy, Elsevier, vol. 194(C), pages 13-20.
    19. Palakodeti, Advait & Azman, Samet & Rossi, Barbara & Dewil, Raf & Appels, Lise, 2021. "A critical review of ammonia recovery from anaerobic digestate of organic wastes via stripping," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    20. Elvira E. Ziganshina & Svetlana S. Bulynina & Ayrat M. Ziganshin, 2022. "Impact of Granular Activated Carbon on Anaerobic Process and Microbial Community Structure during Mesophilic and Thermophilic Anaerobic Digestion of Chicken Manure," Sustainability, MDPI, vol. 14(1), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:838-848. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.