IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp1273-1292.html
   My bibliography  Save this article

Brick : Metadata schema for portable smart building applications

Author

Listed:
  • Balaji, Bharathan
  • Bhattacharya, Arka
  • Fierro, Gabriel
  • Gao, Jingkun
  • Gluck, Joshua
  • Hong, Dezhi
  • Johansen, Aslak
  • Koh, Jason
  • Ploennigs, Joern
  • Agarwal, Yuvraj
  • Bergés, Mario
  • Culler, David
  • Gupta, Rajesh K.
  • Kjærgaard, Mikkel Baun
  • Srivastava, Mani
  • Whitehouse, Kamin

Abstract

Buildings account for 32% of worldwide energy usage. A new regime of exciting new “applications” that span a distributed fabric of sensors, actuators and humans has emerged to improve building energy efficiency and operations management. These applications leverage the technological advances in embedded sensing, processing, networking and methods by which they can be coupled with supervisory control and data acquisition systems deployed in modern buildings and with users on mobile wireless platforms. There are, however, several technical challenges to confront before such a vision of smart building applications and cyber-physical systems can be realized. The sensory data produced by these systems need significant curation before it can be used meaningfully. This is largely a manual, cost-prohibitive task and hence such solutions rarely experience widespread adoption due to the lack of a common descriptive schema.

Suggested Citation

  • Balaji, Bharathan & Bhattacharya, Arka & Fierro, Gabriel & Gao, Jingkun & Gluck, Joshua & Hong, Dezhi & Johansen, Aslak & Koh, Jason & Ploennigs, Joern & Agarwal, Yuvraj & Bergés, Mario & Culler, Davi, 2018. "Brick : Metadata schema for portable smart building applications," Applied Energy, Elsevier, vol. 226(C), pages 1273-1292.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:1273-1292
    DOI: 10.1016/j.apenergy.2018.02.091
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918302162
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.02.091?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goyal, Siddharth & Ingley, Herbert A. & Barooah, Prabir, 2013. "Occupancy-based zone-climate control for energy-efficient buildings: Complexity vs. performance," Applied Energy, Elsevier, vol. 106(C), pages 209-221.
    2. Molina-Solana, Miguel & Ros, María & Ruiz, M. Dolores & Gómez-Romero, Juan & Martin-Bautista, M.J., 2017. "Data science for building energy management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 598-609.
    3. Zhang, Chuan & Romagnoli, Alessandro & Zhou, Li & Kraft, Markus, 2017. "Knowledge management of eco-industrial park for efficient energy utilization through ontology-based approach," Applied Energy, Elsevier, vol. 204(C), pages 1412-1421.
    4. Chee Tahir, Aidid & Bañares-Alcántara, René, 2012. "A knowledge representation model for the optimisation of electricity generation mixes," Applied Energy, Elsevier, vol. 97(C), pages 77-83.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Angelo Massafra & Carlo Costantino & Giorgia Predari & Riccardo Gulli, 2023. "Building Information Modeling and Building Performance Simulation-Based Decision Support Systems for Improved Built Heritage Operation," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    3. Luo, Na & Pritoni, Marco & Hong, Tianzhen, 2021. "An overview of data tools for representing and managing building information and performance data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Yimin Chen & Guanjing Lin & Eliot Crowe & Jessica Granderson, 2021. "Development of a Unified Taxonomy for HVAC System Faults," Energies, MDPI, vol. 14(17), pages 1-25, September.
    5. Antonio De Nicola & Maria Luisa Villani, 2021. "Smart City Ontologies and Their Applications: A Systematic Literature Review," Sustainability, MDPI, vol. 13(10), pages 1-40, May.
    6. Ru-Guan Wang & Wen-Jen Ho & Kuei-Chun Chiang & Yung-Chieh Hung & Jen-Kuo Tai & Jia-Cheng Tan & Mei-Ling Chuang & Chi-Yun Ke & Yi-Fan Chien & An-Ping Jeng & Chien-Cheng Chou, 2023. "Analyzing Long-Term and High Instantaneous Power Consumption of Buildings from Smart Meter Big Data with Deep Learning and Knowledge Graph Techniques," Energies, MDPI, vol. 16(19), pages 1-24, September.
    7. Wetter, Michael & Ehrlich, Paul & Gautier, Antoine & Grahovac, Milica & Haves, Philip & Hu, Jianjun & Prakash, Anand & Robin, Dave & Zhang, Kun, 2022. "OpenBuildingControl: Digitizing the control delivery from building energy modeling to specification, implementation and formal verification," Energy, Elsevier, vol. 238(PA).
    8. Zhiyu Pan & Guanchen Pan & Antonello Monti, 2022. "Semantic-Similarity-Based Schema Matching for Management of Building Energy Data," Energies, MDPI, vol. 15(23), pages 1-23, November.
    9. Filippos Lygerakis & Nikos Kampelis & Dionysia Kolokotsa, 2022. "Knowledge Graphs’ Ontologies and Applications for Energy Efficiency in Buildings: A Review," Energies, MDPI, vol. 15(20), pages 1-32, October.
    10. Le, Duc Nha & Le Tuan, Loc & Dang Tuan, Minh Nguyen, 2019. "Smart-building management system: An Internet-of-Things (IoT) application business model in Vietnam," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 22-35.
    11. Sulzer, Matthias & Wetter, Michael & Mutschler, Robin & Sangiovanni-Vincentelli, Alberto, 2023. "Platform-based design for energy systems," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Can & Zhang, Xin & Cai, Wenjian, 2020. "An energy-saving oriented air balancing method for demand controlled ventilation systems with branch and black-box model," Applied Energy, Elsevier, vol. 264(C).
    2. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    3. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    4. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    5. Naylor, Sophie & Gillott, Mark & Lau, Tom, 2018. "A review of occupant-centric building control strategies to reduce building energy use," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 1-10.
    6. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    7. Gao, Dian-ce & Wang, Shengwei & Shan, Kui, 2016. "In-situ implementation and evaluation of an online robust pump speed control strategy for avoiding low delta-T syndrome in complex chilled water systems of high-rise buildings," Applied Energy, Elsevier, vol. 171(C), pages 541-554.
    8. Ma, Minda & Cai, Wei & Cai, Weiguang, 2018. "Carbon abatement in China's commercial building sector: A bottom-up measurement model based on Kaya-LMDI methods," Energy, Elsevier, vol. 165(PA), pages 350-368.
    9. Ye, Yunyang & Chen, Yan & Zhang, Jian & Pang, Zhihong & O’Neill, Zheng & Dong, Bing & Cheng, Hwakong, 2021. "Energy-saving potential evaluation for primary schools with occupant-centric controls," Applied Energy, Elsevier, vol. 293(C).
    10. Daniela C. A. Pigosso & Andreas Schmiegelow & Maj Munch Andersen, 2018. "Measuring the Readiness of SMEs for Eco-Innovation and Industrial Symbiosis: Development of a Screening Tool," Sustainability, MDPI, vol. 10(8), pages 1-25, August.
    11. Chen, Jiaoliao & Xu, Fang & Tan, Dapeng & Shen, Zheng & Zhang, Libin & Ai, Qinglin, 2015. "A control method for agricultural greenhouses heating based on computational fluid dynamics and energy prediction model," Applied Energy, Elsevier, vol. 141(C), pages 106-118.
    12. Pisello, Anna Laura & Asdrubali, Francesco, 2014. "Human-based energy retrofits in residential buildings: A cost-effective alternative to traditional physical strategies," Applied Energy, Elsevier, vol. 133(C), pages 224-235.
    13. Luo, Zhe & Hong, SeungHo & Ding, YueMin, 2019. "A data mining-driven incentive-based demand response scheme for a virtual power plant," Applied Energy, Elsevier, vol. 239(C), pages 549-559.
    14. Sung-Yoon Huh & Chul-Yong Lee, 2017. "A Demand-Side Perspective on Developing a Future Electricity Generation Mix: Identifying Heterogeneity in Social Preferences," Energies, MDPI, vol. 10(8), pages 1-19, August.
    15. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    16. Raman, Naren Srivaths & Devaprasad, Karthikeya & Chen, Bo & Ingley, Herbert A. & Barooah, Prabir, 2020. "Model predictive control for energy-efficient HVAC operation with humidity and latent heat considerations," Applied Energy, Elsevier, vol. 279(C).
    17. Aguilar, J. & Garces-Jimenez, A. & R-Moreno, M.D. & García, Rodrigo, 2021. "A systematic literature review on the use of artificial intelligence in energy self-management in smart buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    18. Seokho Kim & Yujin Song & Yoondong Sung & Donghyun Seo, 2019. "Development of a Consecutive Occupancy Estimation Framework for Improving the Energy Demand Prediction Performance of Building Energy Modeling Tools," Energies, MDPI, vol. 12(3), pages 1-21, January.
    19. Wierzbowski, Michal & Filipiak, Izabela & Lyzwa, Wojciech, 2017. "Polish energy policy 2050 – An instrument to develop a diversified and sustainable electricity generation mix in coal-based energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 51-70.
    20. Yukun Jiang & Xin Gao & Wenxin Su & Jinrong Li, 2021. "Systematic Knowledge Management of Construction Safety Standards Based on Knowledge Graphs: A Case Study in China," IJERPH, MDPI, vol. 18(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:1273-1292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.