IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v238y2022ipas0360544221017497.html
   My bibliography  Save this article

OpenBuildingControl: Digitizing the control delivery from building energy modeling to specification, implementation and formal verification

Author

Listed:
  • Wetter, Michael
  • Ehrlich, Paul
  • Gautier, Antoine
  • Grahovac, Milica
  • Haves, Philip
  • Hu, Jianjun
  • Prakash, Anand
  • Robin, Dave
  • Zhang, Kun

Abstract

The current process for specifying, installing and commissioning building control sequences is largely manual and based on ambiguous natural language specifications. It lacks a formal end-to-end quality control and it has been shown not to deliver high performance sequences at scale. While high-performance HVAC control sequences enable significant reductions in energy consumption, errors in implementing the control logic are common even for less advanced sequences. To improve this situation, we present a digitized building control delivery workflow with formal end-to-end verification, a Control Description Language for the digital specification of building control sequences within this workflow, and software tools that enable digitization of this process. Using the process and tools introduced here, mechanical designers can customize, test and improve these sequences within annual energy simulation, store them in a library for use in other projects, and export them for bidding. Control providers can implement the sequences on existing control product lines through code generation. Commissioning providers can formally verify whether as-installed sequences conform to the digital design specification that was exported by the mechanical designer. Moreover, control product development teams can use the reference implementations of these libraries within their product testing to ensure that their products reproduce the behavior of the reference implementations. This paper presents this process, the language and the supporting software, together with examples of all of the above steps. The presented work has given rise to a new proposed standard, ASHRAE 231P, that will allow digitizing the building control delivery process through the standardization of a control-vendor independent format for exchanging control logic that we pioneered through the here presented work.

Suggested Citation

  • Wetter, Michael & Ehrlich, Paul & Gautier, Antoine & Grahovac, Milica & Haves, Philip & Hu, Jianjun & Prakash, Anand & Robin, Dave & Zhang, Kun, 2022. "OpenBuildingControl: Digitizing the control delivery from building energy modeling to specification, implementation and formal verification," Energy, Elsevier, vol. 238(PA).
  • Handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221017497
    DOI: 10.1016/j.energy.2021.121501
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221017497
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.121501?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Balaji, Bharathan & Bhattacharya, Arka & Fierro, Gabriel & Gao, Jingkun & Gluck, Joshua & Hong, Dezhi & Johansen, Aslak & Koh, Jason & Ploennigs, Joern & Agarwal, Yuvraj & Bergés, Mario & Culler, Davi, 2018. "Brick : Metadata schema for portable smart building applications," Applied Energy, Elsevier, vol. 226(C), pages 1273-1292.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gautier, Antoine & Wetter, Michael & Sulzer, Matthias, 2022. "Resilient cooling through geothermal district energy system," Applied Energy, Elsevier, vol. 325(C).
    2. Sulzer, Matthias & Wetter, Michael & Mutschler, Robin & Sangiovanni-Vincentelli, Alberto, 2023. "Platform-based design for energy systems," Applied Energy, Elsevier, vol. 352(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Zhelun & O’Neill, Zheng & Wen, Jin & Pradhan, Ojas & Yang, Tao & Lu, Xing & Lin, Guanjing & Miyata, Shohei & Lee, Seungjae & Shen, Chou & Chiosa, Roberto & Piscitelli, Marco Savino & Capozzoli, , 2023. "A review of data-driven fault detection and diagnostics for building HVAC systems," Applied Energy, Elsevier, vol. 339(C).
    2. Antonio De Nicola & Maria Luisa Villani, 2021. "Smart City Ontologies and Their Applications: A Systematic Literature Review," Sustainability, MDPI, vol. 13(10), pages 1-40, May.
    3. Filippos Lygerakis & Nikos Kampelis & Dionysia Kolokotsa, 2022. "Knowledge Graphs’ Ontologies and Applications for Energy Efficiency in Buildings: A Review," Energies, MDPI, vol. 15(20), pages 1-32, October.
    4. Le, Duc Nha & Le Tuan, Loc & Dang Tuan, Minh Nguyen, 2019. "Smart-building management system: An Internet-of-Things (IoT) application business model in Vietnam," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 22-35.
    5. Sulzer, Matthias & Wetter, Michael & Mutschler, Robin & Sangiovanni-Vincentelli, Alberto, 2023. "Platform-based design for energy systems," Applied Energy, Elsevier, vol. 352(C).
    6. Angelo Massafra & Carlo Costantino & Giorgia Predari & Riccardo Gulli, 2023. "Building Information Modeling and Building Performance Simulation-Based Decision Support Systems for Improved Built Heritage Operation," Sustainability, MDPI, vol. 15(14), pages 1-31, July.
    7. Ru-Guan Wang & Wen-Jen Ho & Kuei-Chun Chiang & Yung-Chieh Hung & Jen-Kuo Tai & Jia-Cheng Tan & Mei-Ling Chuang & Chi-Yun Ke & Yi-Fan Chien & An-Ping Jeng & Chien-Cheng Chou, 2023. "Analyzing Long-Term and High Instantaneous Power Consumption of Buildings from Smart Meter Big Data with Deep Learning and Knowledge Graph Techniques," Energies, MDPI, vol. 16(19), pages 1-24, September.
    8. Yimin Chen & Guanjing Lin & Eliot Crowe & Jessica Granderson, 2021. "Development of a Unified Taxonomy for HVAC System Faults," Energies, MDPI, vol. 14(17), pages 1-25, September.
    9. Zhiyu Pan & Guanchen Pan & Antonello Monti, 2022. "Semantic-Similarity-Based Schema Matching for Management of Building Energy Data," Energies, MDPI, vol. 15(23), pages 1-23, November.
    10. Luo, Na & Pritoni, Marco & Hong, Tianzhen, 2021. "An overview of data tools for representing and managing building information and performance data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).

    More about this item

    Keywords

    Control; Building; HVAC; Simulation;
    All these keywords.

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:238:y:2022:i:pa:s0360544221017497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.