IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v204y2017icp1412-1421.html
   My bibliography  Save this article

Knowledge management of eco-industrial park for efficient energy utilization through ontology-based approach

Author

Listed:
  • Zhang, Chuan
  • Romagnoli, Alessandro
  • Zhou, Li
  • Kraft, Markus

Abstract

An ontology-based approach for Eco-Industrial Park (EIP) knowledge management is proposed in this paper. The designed ontology in this study is formalized conceptualization of EIP. Based on such an ontological representation, a Knowledge-Based System (KBS) for EIP energy management named J-Park Simulator (JPS) is developed. By applying JPS to the solution of EIP waste heat utilization problem, the results of this study show that ontology is a powerful tool for knowledge management of complex systems such as EIP. The ontology-based approach can increase knowledge interoperability between different companies in EIP. The ontology-based approach can also allow intelligent decision making by using disparate data from remote databases, which implies the possibility of self-optimization without human intervention scenario of Internet of Things (IoT). It is shown through this study that KBS can bridge the communication gaps between different companies in EIP, sequentially more potential Industrial Symbiosis (IS) links can be established to improve the overall energy efficiency of the whole EIP.

Suggested Citation

  • Zhang, Chuan & Romagnoli, Alessandro & Zhou, Li & Kraft, Markus, 2017. "Knowledge management of eco-industrial park for efficient energy utilization through ontology-based approach," Applied Energy, Elsevier, vol. 204(C), pages 1412-1421.
  • Handle: RePEc:eee:appene:v:204:y:2017:i:c:p:1412-1421
    DOI: 10.1016/j.apenergy.2017.03.130
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917303756
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.03.130?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Chuan & Zhou, Li & Chhabra, Pulkit & Garud, Sushant S. & Aditya, Kevin & Romagnoli, Alessandro & Comodi, Gabriele & Dal Magro, Fabio & Meneghetti, Antonella & Kraft, Markus, 2016. "A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 184(C), pages 88-102.
    2. Pan, Ming & Sikorski, Janusz & Akroyd, Jethro & Mosbach, Sebastian & Lau, Raymond & Kraft, Markus, 2016. "Design technologies for eco-industrial parks: From unit operations to processes, plants and industrial networks," Applied Energy, Elsevier, vol. 175(C), pages 305-323.
    3. Payam Barnaghi & Wei Wang & Cory Henson & Kerry Taylor, 2012. "Semantics for the Internet of Things: Early Progress and Back to the Future," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 8(1), pages 1-21, January.
    4. Desai, Nishith B. & Bandyopadhyay, Santanu, 2009. "Process integration of organic Rankine cycle," Energy, Elsevier, vol. 34(10), pages 1674-1686.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qi Zhang & Yuanqiao Wen & Chunhui Zhou & Hai Long & Dong Han & Fan Zhang & Changshi Xiao, 2019. "Construction of Knowledge Graphs for Maritime Dangerous Goods," Sustainability, MDPI, vol. 11(10), pages 1-16, May.
    2. Yu, Xiang & Chen, Hongbo & Wang, Bo & Wang, Ran & Shan, Yuli, 2018. "Driving forces of CO2 emissions and mitigation strategies of China’s National low carbon pilot industrial parks," Applied Energy, Elsevier, vol. 212(C), pages 1553-1562.
    3. Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
    4. Balaji, Bharathan & Bhattacharya, Arka & Fierro, Gabriel & Gao, Jingkun & Gluck, Joshua & Hong, Dezhi & Johansen, Aslak & Koh, Jason & Ploennigs, Joern & Agarwal, Yuvraj & Bergés, Mario & Culler, Davi, 2018. "Brick : Metadata schema for portable smart building applications," Applied Energy, Elsevier, vol. 226(C), pages 1273-1292.
    5. Yukun Jiang & Xin Gao & Wenxin Su & Jinrong Li, 2021. "Systematic Knowledge Management of Construction Safety Standards Based on Knowledge Graphs: A Case Study in China," IJERPH, MDPI, vol. 18(20), pages 1-15, October.
    6. Daniela C. A. Pigosso & Andreas Schmiegelow & Maj Munch Andersen, 2018. "Measuring the Readiness of SMEs for Eco-Innovation and Industrial Symbiosis: Development of a Screening Tool," Sustainability, MDPI, vol. 10(8), pages 1-25, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Hai & Wang, Haiying & Zhu, Tong & Deng, Wanli, 2017. "A novel model for steam transportation considering drainage loss in pipeline networks," Applied Energy, Elsevier, vol. 188(C), pages 178-189.
    2. Anastasovski, Aleksandar, 2023. "What is needed for transformation of industrial parks into potential positive energy industrial parks? A review," Energy Policy, Elsevier, vol. 173(C).
    3. Luca Fraccascia & Vahid Yazdanpanah & Guido Capelleveen & Devrim Murat Yazan, 2021. "Energy-based industrial symbiosis: a literature review for circular energy transition," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 4791-4825, April.
    4. Zhang, Bing J. & Tang, Qiao Q. & Zhao, Yue & Chen, Yu Q. & Chen, Qing L. & Floudas, Christodoulos A., 2018. "Multi-level energy integration between units, plants and sites for natural gas industrial parks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 1-15.
    5. Kostevšek, Anja & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Papa, Gregor & Petek, Janez, 2016. "The concept of an ecosystem model to support the transformation to sustainable energy systems," Applied Energy, Elsevier, vol. 184(C), pages 1460-1469.
    6. Zhaoyu Li & Rui Xu & Pingyuan Cui & Lida Xu & Wu He, 0. "Geometry-based propagation of temporal constraints," Information Systems Frontiers, Springer, vol. 0, pages 1-14.
    7. Lai, Ngoc Anh & Wendland, Martin & Fischer, Johann, 2011. "Working fluids for high-temperature organic Rankine cycles," Energy, Elsevier, vol. 36(1), pages 199-211.
    8. Chan, Wai Mun & Leong, Yik Teeng & Foo, Ji Jinn & Chew, Irene Mei Leng, 2017. "Synthesis of energy efficient chilled and cooling water network by integrating waste heat recovery refrigeration system," Energy, Elsevier, vol. 141(C), pages 1555-1568.
    9. Amini, Ali & Mirkhani, Nima & Pakjesm Pourfard, Pedram & Ashjaee, Mehdi & Khodkar, Mohammad Amin, 2015. "Thermo-economic optimization of low-grade waste heat recovery in Yazd combined-cycle power plant (Iran) by a CO2 transcritical Rankine cycle," Energy, Elsevier, vol. 86(C), pages 74-84.
    10. Robin Molinier & Pascal da Costa, 2019. "Infrastructure sharing synergies and industrial symbiosis: optimal capacity oversizing and pricing," Post-Print hal-01792032, HAL.
    11. Stijepovic, Mirko Z. & Papadopoulos, Athanasios I. & Linke, Patrick & Grujic, Aleksandar S. & Seferlis, Panos, 2014. "An exergy composite curves approach for the design of optimum multi-pressure organic Rankine cycle processes," Energy, Elsevier, vol. 69(C), pages 285-298.
    12. Yu, Haoshui & Gundersen, Truls & Feng, Xiao, 2018. "Process integration of organic Rankine cycle (ORC) and heat pump for low temperature waste heat recovery," Energy, Elsevier, vol. 160(C), pages 330-340.
    13. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    14. Gergely Marcell Honti & Janos Abonyi, 2019. "A Review of Semantic Sensor Technologies in Internet of Things Architectures," Complexity, Hindawi, vol. 2019, pages 1-21, June.
    15. Patrick Linke & Athanasios I. Papadopoulos & Panos Seferlis, 2015. "Systematic Methods for Working Fluid Selection and the Design, Integration and Control of Organic Rankine Cycles—A Review," Energies, MDPI, vol. 8(6), pages 1-47, May.
    16. Xingyun Yan & Lingyu Wang & Mingzhu Fang & Jie Hu, 2022. "How Can Industrial Parks Achieve Carbon Neutrality? Literature Review and Research Prospect Based on the CiteSpace Knowledge Map," Sustainability, MDPI, vol. 15(1), pages 1-29, December.
    17. Lecompte, S. & Huisseune, H. & van den Broek, M. & De Paepe, M., 2015. "Methodical thermodynamic analysis and regression models of organic Rankine cycle architectures for waste heat recovery," Energy, Elsevier, vol. 87(C), pages 60-76.
    18. Zhang, Chuan & Zhou, Li & Chhabra, Pulkit & Garud, Sushant S. & Aditya, Kevin & Romagnoli, Alessandro & Comodi, Gabriele & Dal Magro, Fabio & Meneghetti, Antonella & Kraft, Markus, 2016. "A novel methodology for the design of waste heat recovery network in eco-industrial park using techno-economic analysis and multi-objective optimization," Applied Energy, Elsevier, vol. 184(C), pages 88-102.
    19. Yu, Haoshui & Eason, John & Biegler, Lorenz T. & Feng, Xiao, 2017. "Simultaneous heat integration and techno-economic optimization of Organic Rankine Cycle (ORC) for multiple waste heat stream recovery," Energy, Elsevier, vol. 119(C), pages 322-333.
    20. Ayachi, Fadhel & Ksayer, Elias Boulawz & Neveu, Pierre & Zoughaib, Assaad, 2016. "Experimental investigation and modeling of a hermetic scroll expander," Applied Energy, Elsevier, vol. 181(C), pages 256-267.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:204:y:2017:i:c:p:1412-1421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.