IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v226y2018icp1064-1075.html
   My bibliography  Save this article

Techno-economic analysis of high-efficiency natural-gas generators for residential combined heat and power

Author

Listed:
  • Vishwanathan, Gokul
  • Sculley, Julian P.
  • Fischer, Adam
  • Zhao, Ji-Cheng

Abstract

Residential combined heat and power (CHP) systems produce electricity onsite while utilizing waste heat to supplement home heating requirements, which can lead to significant reductions in CO2 emissions and primary energy consumption. However, the current deployment of such CHP systems in the U.S. residential sector is extremely low primarily due to their high cost, short system life, and low system efficiency. Based on an analysis of average energy consumption of representative single-family homes in 10 U.S. cities across 7 different climate zones, it is concluded that there is no one-size-fits-all residential CHP system, but that a range of products are more likely to reflect consumer preferences. It is further identified via a systematic techno-economic analysis (TEA) that high-efficiency (e.g., 30–40% fuel to electricity), long-life (e.g., 15 years), low-cost (preferably less than U.S. $2,500 installed price), and low emissions are key requirements to enable widespread deployment of CHP systems in the U.S. residential sector. This article analyzes how the payback period would change for each city by varying nearly a dozen parameters and concludes with an evaluation on maximum market penetration based on a given set of parameters, and the resulting energy and emissions savings that can be practically achieved in some scenarios.

Suggested Citation

  • Vishwanathan, Gokul & Sculley, Julian P. & Fischer, Adam & Zhao, Ji-Cheng, 2018. "Techno-economic analysis of high-efficiency natural-gas generators for residential combined heat and power," Applied Energy, Elsevier, vol. 226(C), pages 1064-1075.
  • Handle: RePEc:eee:appene:v:226:y:2018:i:c:p:1064-1075
    DOI: 10.1016/j.apenergy.2018.06.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918308821
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.06.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Barbieri, Enrico Saverio & Spina, Pier Ruggero & Venturini, Mauro, 2012. "Analysis of innovative micro-CHP systems to meet household energy demands," Applied Energy, Elsevier, vol. 97(C), pages 723-733.
    2. Badami, M. & Mura, M. & Campanile, P. & Anzioso, F., 2008. "Design and performance evaluation of an innovative small scale combined cycle cogeneration system," Energy, Elsevier, vol. 33(8), pages 1264-1276.
    3. García, D. & González, M.A. & Prieto, J.I. & Herrero, S. & López, S. & Mesonero, I. & Villasante, C., 2014. "Characterization of the power and efficiency of Stirling engine subsystems," Applied Energy, Elsevier, vol. 121(C), pages 51-63.
    4. Mancarella, Pierluigi & Chicco, Gianfranco, 2009. "Global and local emission impact assessment of distributed cogeneration systems with partial-load models," Applied Energy, Elsevier, vol. 86(10), pages 2096-2106, October.
    5. ., 2017. "Building a consequentialist framework," Chapters, in: Morality and Power, chapter 11, pages 181-196, Edward Elgar Publishing.
    6. Siddhartha Nandy & Chae Young Lim & Tapabrata Maiti, 2017. "Additive model building for spatial regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(3), pages 779-800, June.
    7. Amos Darko & Albert P. C. Chan, 2017. "Review of Barriers to Green Building Adoption," Sustainable Development, John Wiley & Sons, Ltd., vol. 25(3), pages 167-179, May.
    8. Tapia-Ahumada, K. & Pérez-Arriaga, I.J. & Moniz, E.J., 2013. "A methodology for understanding the impacts of large-scale penetration of micro-combined heat and power," Energy Policy, Elsevier, vol. 61(C), pages 496-512.
    9. Qiu, K. & Hayden, A.C.S., 2012. "Integrated thermoelectric and organic Rankine cycles for micro-CHP systems," Applied Energy, Elsevier, vol. 97(C), pages 667-672.
    10. Barelli, L. & Bidini, G. & Gallorini, F. & Ottaviano, A., 2011. "An energetic–exergetic analysis of a residential CHP system based on PEM fuel cell," Applied Energy, Elsevier, vol. 88(12), pages 4334-4342.
    11. Mago, Pedro J. & Luck, Rogelio, 2013. "Evaluation of the potential use of a combined micro-turbine organic Rankine cycle for different geographic locations," Applied Energy, Elsevier, vol. 102(C), pages 1324-1333.
    12. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    13. ., 2017. "Building an economics department," Chapters, in: The Value of Applied Economics, chapter 4, pages 64-84, Edward Elgar Publishing.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ali Sulaiman Alsagri & Abdulrahman A. Alrobaian, 2022. "Optimization of Combined Heat and Power Systems by Meta-Heuristic Algorithms: An Overview," Energies, MDPI, vol. 15(16), pages 1-34, August.
    2. Romero-Quete, David & Garcia, Javier Rosero, 2019. "An affine arithmetic-model predictive control approach for optimal economic dispatch of combined heat and power microgrids," Applied Energy, Elsevier, vol. 242(C), pages 1436-1447.
    3. Kim, Min Jae & Kim, Tong Seop & Flores, Robert J. & Brouwer, Jack, 2020. "Neural-network-based optimization for economic dispatch of combined heat and power systems," Applied Energy, Elsevier, vol. 265(C).
    4. Darzi, Mahdi & Johnson, Derek & Ulishney, Chris & Clark, Nigel, 2018. "Low pressure direct injection strategies effect on a small SI natural gas two-stroke engine’s energy distribution and emissions," Applied Energy, Elsevier, vol. 230(C), pages 1585-1602.
    5. Pavel Atănăsoae, 2020. "Technical and Economic Assessment of Micro-Cogeneration Systems for Residential Applications," Sustainability, MDPI, vol. 12(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2015. "Options for residential building services design using fuel cell based micro-CHP and the potential for heat integration," Applied Energy, Elsevier, vol. 138(C), pages 685-694.
    2. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
    3. Asensio, F.J. & San Martín, J.I. & Zamora, I. & Oñederra, O., 2018. "Model for optimal management of the cooling system of a fuel cell-based combined heat and power system for developing optimization control strategies," Applied Energy, Elsevier, vol. 211(C), pages 413-430.
    4. Adam, Alexandros & Fraga, Eric S. & Brett, Dan J.L., 2018. "A modelling study for the integration of a PEMFC micro-CHP in domestic building services design," Applied Energy, Elsevier, vol. 225(C), pages 85-97.
    5. Li, Hailong & Campana, Pietro Elia & Tan, Yuting & Yan, Jinyue, 2018. "Feasibility study about using a stand-alone wind power driven heat pump for space heating," Applied Energy, Elsevier, vol. 228(C), pages 1486-1498.
    6. Araoz, Joseph A. & Salomon, Marianne & Alejo, Lucio & Fransson, Torsten H., 2015. "Numerical simulation for the design analysis of kinematic Stirling engines," Applied Energy, Elsevier, vol. 159(C), pages 633-650.
    7. Entchev, E. & Yang, L. & Ghorab, M. & Lee, E.J., 2013. "Simulation of hybrid renewable microgeneration systems in load sharing applications," Energy, Elsevier, vol. 50(C), pages 252-261.
    8. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.
    9. Ondeck, Abigail D. & Edgar, Thomas F. & Baldea, Michael, 2015. "Optimal operation of a residential district-level combined photovoltaic/natural gas power and cooling system," Applied Energy, Elsevier, vol. 156(C), pages 593-606.
    10. Caresana, Flavio & Brandoni, Caterina & Feliciotti, Petro & Bartolini, Carlo Maria, 2011. "Energy and economic analysis of an ICE-based variable speed-operated micro-cogenerator," Applied Energy, Elsevier, vol. 88(3), pages 659-671, March.
    11. Yang, Libing & Entchev, Evgueniy & Ghorab, Mohamed & Lee, Euy-Joon & Kang, Eun-Chul & Kim, Yu-Jin & Nam, Yujin & Bae, Sangmu & Kim, Kwonye, 2022. "Advanced smart trigeneration energy system design for commercial building applications – Energy and cost performance analyses," Energy, Elsevier, vol. 259(C).
    12. Ziviani, Davide & Beyene, Asfaw & Venturini, Mauro, 2014. "Advances and challenges in ORC systems modeling for low grade thermal energy recovery," Applied Energy, Elsevier, vol. 121(C), pages 79-95.
    13. Li, Jianwei & Wang, Xudong & Zhang, Zhenyu & Le Blond, Simon & Yang, Qingqing & Zhang, Min & Yuan, Weijia, 2017. "Analysis of a new design of the hybrid energy storage system used in the residential m-CHP systems," Applied Energy, Elsevier, vol. 187(C), pages 169-179.
    14. Wegener, Moritz & Malmquist, Anders & Isalgué, Antonio & Martin, Andrew, 2018. "Biomass-fired combined cooling, heating and power for small scale applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 392-410.
    15. Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2015. "Influence of heat dumping on the operation of residential micro-CHP systems," Applied Energy, Elsevier, vol. 160(C), pages 206-220.
    16. Mirzabeiki, Vahid & Saghiri, Soroosh Sam, 2020. "From ambition to action: How to achieve integration in omni-channel?," Journal of Business Research, Elsevier, vol. 110(C), pages 1-11.
    17. Ahmad Baroutaji & Arun Arjunan & John Robinson & Tabbi Wilberforce & Mohammad Ali Abdelkareem & Abdul Ghani Olabi, 2021. "PEMFC Poly-Generation Systems: Developments, Merits, and Challenges," Sustainability, MDPI, vol. 13(21), pages 1-31, October.
    18. Qiu, K. & Hayden, A.C.S., 2014. "Implementation of a TPV integrated boiler for micro-CHP in residential buildings," Applied Energy, Elsevier, vol. 134(C), pages 143-149.
    19. Lo Basso, Gianluigi & de Santoli, Livio & Albo, Angelo & Nastasi, Benedetto, 2015. "H2NG (hydrogen-natural gas mixtures) effects on energy performances of a condensing micro-CHP (combined heat and power) for residential applications: An expeditious assessment of water condensation an," Energy, Elsevier, vol. 84(C), pages 397-418.
    20. Chmielewski, Adrian & Gumiński, Robert & Mączak, Jędrzej & Radkowski, Stanisław & Szulim, Przemysław, 2016. "Aspects of balanced development of RES and distributed micro-cogeneration use in Poland: Case study of a µCHP with Stirling engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 930-952.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:226:y:2018:i:c:p:1064-1075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.